

无线充电器 Flash 单片机

BP45F0044

版本: V1.00 日期: 2020-03-16

www.holtek.com

目录

特性	5
CPU 特性	
周边特性	5
概述	6
方框图	6
引脚图	7
引脚说明	7
内部连接信号	
极限参数	8
直流电气特性	9
工作电压特性	
待机电流特性	9
工作电流特性	9
交流电气特性	
内部高速振荡器 – HIRC – 频率精准度	
内部低速振荡器 – LIRC – 频率精准度	
工作频率电气特性曲线图	
系统上电时间电气特性	
输入/输出电气特性	
存储器电气特性	
LVR 电气特性	13
过电流保护电气特性	13
N型 MOSFET 电气特性	14
上电复位电气特性	14
系统结构	15
时序和流水线结构	
程序计数器	
堆栈	
算术逻辑单元 – ALU	16
Flash 程序存储器	
结构	
特殊向量 ***	
查表 查表范例	
三	
片上调试 – OCDS	
数据存储器	
结构	
通用数据存储器	
特殊功能数据存储器	

特殊功能寄存器	22
间接寻址寄存器 – IAR0	22
存储器指针 – MP0	22
累加器 – ACC	22
程序计数器低字节寄存器 – PCL	23
表格寄存器 – TBLP, TBLH	23
状态寄存器 – STATUS	23
振荡器	25
振荡器概述	25
系统时钟配置	25
内部高速 RC 振荡器 – HIRC	25
内部 32kHz 振荡器 – LIRC	25
工作模式和系统时钟	26
系统时钟	26
系统工作模式	26
控制寄存器	28
工作模式切换	
待机电流的注意事项	
唤醒	32
看门狗定时器	33
看门狗定时器时钟源	33
看门狗定时器控制寄存器	33
看门狗定时器操作	34
复位和初始化	35
复位功能	35
复位初始状态	37
输入/输出端口	39
上拉电阻	39
PA 口唤醒	39
输入/输出端口控制寄存器	40
输入/输出端口源电流控制	
引脚共用功能	
输入/输出引脚结构	
编程注意事项	42
定时 / 事件计数器	
定时 / 事件计数器输入时钟源	
定时 / 事件计数器寄存器	
定时 / 事件计数器工作模式	
编程注意事项	47
脉冲宽度调制	48
PWM 寄存器说明	48
PWM 操作	49

过电流保护 – OCP	50
OCP 操作	50
OCP 寄存器介绍	51
输入电压范围	53
OCP 运算放大器和比较器失调校准	54
中断	55
中断寄存器	55
中断操作	56
过电流保护中断	56
时基中断	56
定时 / 事件计数器中断	57
中断唤醒功能	57
编程注意事项	58
应用电路	58
指令集	59
简介	
指令周期	59
数据的传送	59
算术运算	59
逻辑和移位运算	59
分支和控制转换	60
位运算	60
查表运算	60
其它运算	60
指令集概要	61
惯例	61
指令定义	63
封装信息	75
8-pin SOP (150mil) 外形尺寸	
16-pin NSOP (150mil) 外形尺寸	77

特性

CPU 特性

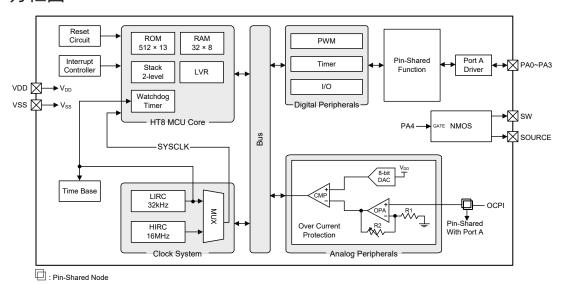
- 工作电压
 - ♦ f_{SYS}=16MHz: 3.3V~5.5V
- V_{DD}=5V,系统时钟为 16MHz 时,指令周期为 0.25μs
- 提供暂停和唤醒功能,以降低功耗
- 振荡器类型
 - ◆ 内部高速 16MHz RC HIRC
 - ◆ 内部低速 32kHz RC LIRC
- 多种工作模式: 快速、低速、空闲和休眠
- 内部集成的振荡器无需外接元件
- 所有指令都可在 1~2 个指令周期内完成
- 查表指令
- 63 条指令
- 2 层堆栈
- 位操作指令

周边特性

- Flash 程序存储器: 512×13
- RAM 数据存储器: 32×8
- 看门狗定时器功能
- 4 个双向 I/O 口
- 可编程 I/O 口源电流可用于 LED 驱动应用
- 1 个 8-bit 可编程定时 / 事件计数器, 带溢出中断和预分频器功能
- 1 个 8-bit PWM 输出,与 I/O 口复用
- 单时基功能用以产生固定的时间中断信号
- 带中断的过电流保护 (OCP)
- 内部高压 N型 MOSFET
- 低电压复位功能
- 封装类型: 8-pin SOP

概述

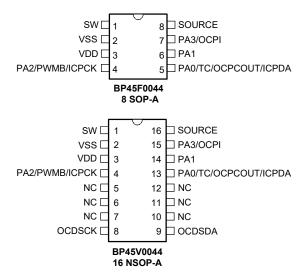
该单片机是一款具有 8 位高性能精简指令集的 Flash 单片机。该单片机集成高压 NMOS,可直接驱动线圈传输能量。


在存储器特性方面,Flash 存储器可多次编程的特性给用户提供了极大的方便。此外还包含了一个 RAM 数据存储器。

使用灵活的定时/事件计数器,可提供定时功能、事件计数功能及脉冲宽度测量功能。该单片机还包含一脉宽调制功能可提供 8-bit PWM 互补输出。内部看门狗定时器和低压复位等保护特性,外加优秀的抗干扰和 ESD 保护性能,确保单片机在恶劣的电磁干扰环境下可靠地运行。

该单片机提供了丰富的内部高速和低速振荡器功能选项,且内建完整的系统振荡器,无需外围元器件。其在不同工作模式之间动态切换的能力,为用户提供了一个优化单片机操作和减少功耗的手段。

包含 I/O 使用灵活、时基功能和 PWM 输出等其它特性确保了该单片机可以适合于简易型无线充电器产品应用,如电动牙刷、剃须刀等产品。


方框图

Rev.1.00 6 2020-03-16

引脚图

- 注: 1. 所需引脚共用功能通过引脚共用寄存器中相应的软件位控制。
 - 2. BP45V0044 是 BP45F0044 的 OCDS EV 芯片, OCDSDA 和 OCDSCK 引脚为 OCDS 专用引脚, 仅存在于 OCDS EV 芯片。
 - 3. 16-pin NSOP-A 的封装类型仅用于 OCDS EV 芯片。
 - 4. 对于未引出的 PA4 引脚,需合理设置其状态以避免输入浮空造成额外耗电,详见"待机电流注意事项"和"输入/输出端口"章节。

引脚说明

每个引脚的功能如下表所列。然而,引脚配置的详细内容见规格书的其它章节。

引脚名称	功能	OPT	I/T	O/T	说明
PA0/TC/	PA0	PAS PAPU PAWU	ST	CMOS	通用 I/O 口,可通过寄存器设置上拉电阻和唤醒功能
OCPCOUT/ ICPDA	TC	PAS	ST	_	定时 / 事件计数器时钟输入
ICPDA	OCPCOUT	PAS	_	CMOS	OCP 比较器输出
	ICPDA		ST	CMOS	ICP 数据 / 地址引脚
PA1	PA1	PAS PAPU PAWU	ST	CMOS	通用 I/O 口,可通过寄存器设置上拉电阻和唤醒功能
PA2/PWMB/	PA2	PAS PAPU PAWU	ST	CMOS	通用 I/O 口,可通过寄存器设置上拉电阻和唤醒功能
ICPCK	PWMB	PAS	_	CMOS	PWM 信号反相输出
	ICPCK	_	ST	_	ICP时钟引脚
PA3/OCPI	PA3	PAS PAPU PAWU	ST	CMOS	通用 I/O 口,可通过寄存器设置上拉电阻和唤醒功能
	OCPI	PAS	AN		OCP 输入
SW	SW	_	_	NMOS	NMOS 漏极端

引脚名称	功能	OPT	I/T	O/T	说明
SOURCE	SOURCE	_	_	NMOS	NMOS 源极端
VDD	VDD	_	PWR	_	正电源电压
VSS	VSS	_	PWR	_	负电源电压,接地
下列引脚仅存在	于 BP45V00	44			
OCDSDA	OCDSDA	_	ST	CMOS	OCDS 数据 / 地址引脚, 仅用于 EV 芯片
OCDSCK	OCDSCK	_	ST	_	OCDS 时钟引脚,仅用于 EV 芯片

注: I/T: 输入类型;

O/T: 输出类型; OPT: 通过寄存器选项来配置; PWR: 电源;

ST: 施密特触发输入; CMOS: CMOS 输出; NMOS: NMOS 输出: AN: 模拟信号。

内部连接信号

MCU 的 PA4 和 MOSFET 信号的 GATE 是由内部连接的, 二者都未连至外部封 装。为确保正确的内部连接, PA4 相关的 I/O 控制需合理设置。

MOSFET 信号名称	类型	MCU 信号名称	功能	类型	描述			
GATE	GATE DI PA4/		PA4	DO	通用 I/O 口。 可通过寄存器设置上拉电阻并始终使能下拉电阻。 内部连接到 MOSFET 信号 GATE。			
	21	PWM	PWM	DO	PWM 信号输出。 内部连接到 MOSFET 信号 GATE。			

注: DO: 数字输出;

DI: 数字输入。

极限参数

电源供应电压......Vss-0.3V~6.0V 输入电压......Vss-0.3V~Vpp+0.3V 储存温度-50°C~125°C 工作温度......-40°C~85°C I_{OH} 总电流-80mA 总功耗.......500mW

注:这里只强调额定功率,超过极限参数所规定的范围将对芯片造成损害,无 法预期芯片在上述标示范围外的工作状态, 而且若长期在标示范围外的条 件下工作,可能影响芯片的可靠性。

2020-03-16 Rev.1.00 8

直流电气特性

以下表格中参数测量结果可能受多个因素影响,如振荡器类型、工作电压、工作频率、引脚负载状况、温度和程序指令等等。

工作电压特性

 $Ta=-40^{\circ}C\sim85^{\circ}C$

符号	参数	测试条件	最小	典型	最大	单位
$V_{ m DD}$	工作电压 – HIRC	f _{SYS} =16MHz	3.3	_	5.5	V
	工作电压 – LIRC	f _{SYS} =32kHz	3.3	_	5.5	V

待机电流特性

Ta=25°C,除非另有说明。

符号	待机模式		测试条件	最小	典型	最大	最大	单位
	1寸7八代天八	$\mathbf{V}_{ extsf{DD}}$	条件	取小	- 典型	取入	@85°C	半江
		3.3V	WDT off	_	0.08	0.12	1.40	
休眠模式	5V	WDI oli	_	0.15	0.29	2.20	μΑ	
	外 城快.八	3.3V	WDT on	_	3	5	6	
,		5V	WDION	_	5	10	12	μA
I_{STB}	空闲模式 0 – LIRC	3.3V	f	_	3	5	6	
		5V	f _{SUB} on	_	5	10	12	μΑ
	穷闰棋式 1 HIDC	3.3V	f on f -16MUz		0.80	1.20	1.44	122 A
	空闲模式 1 – HIRC	5V	f _{SUB} on, f _{SYS} =16MHz		1.4	2.0	2.4	mA

- 注: 当使用该表格电气特性数据时,以下几点需注意:
 - 1. 任何数字输入都设置为非浮空的状态。
 - 2. 所有测量都在无负载且所有外围功能关闭的条件下进行。
 - 3. 无直流电流路径。
 - 4. 所有待机电流数值都是在 HALT 指令执行即停止执行所有指令后测得。

工作电流特性

Ta=-40°C~85°C

符号 工	工作模式		测试条件	最小	典型	最大	単位
	上1下1天八	$\mathbf{V}_{ extsf{DD}}$	条件	取小	兴尘	取入	半江
低速模式 – LIRC 快速模式 – HIRC	任油模式 LIDC	3.3V	C 221 II		10	20	
	似述侯八-LIKC	5V	f _{sys} =32kHz	_	30	50	μΑ
	おは出土 IIDC	3.3V	C 1/MIL	_	1.5	3.0	
		5V	f _{SYS} =16MHz		2.5	5.0	mA

- 注: 当使用该表格电气特性数据时,以下几点需注意:
 - 1. 任何数字输入都设置为非浮空的状态。
 - 2. 所有测量都在无负载且所有外围功能关闭的条件下进行。
 - 3. 无直流电流路径。
 - 4. 所有工作电流数值是在执行连续的 NOP 指令循环程序下测得

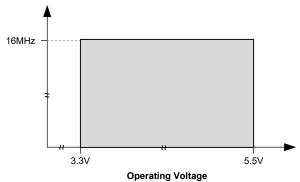
交流电气特性

以下表格中参数测量结果可能受多个因素影响,如振荡器类型、工作电压、工 作频率和温度等等。

内部高速振荡器 - HIRC - 频率精准度

程序烧录时,烧录器会调整 HIRC 振荡器使其工作在用户选择的 HIRC 频率和工作电压 (5V) 条件下。

符号 参数	测	最小	典型	旦十	单位				
		V _{DD}	温度	取小	典型	最大	半江		
	EXI	5V	53 7	5 37	25°C	-1%	16	+1%	
l _c	通过烧录器调整后的 16MHz		-40°C~85°C	-2%	16	+2%	MII-		
HIRC 频率	HIRC 频率	2 237 5 537	25°C	-2.5%	16	+2.5%	MHz		
		3.3V~5.5V	-40°C~85°C	-3%	16	+3%			


- 注: 1. 烧录器可在 5V 这个固定的电压下对 HIRC 频率进行调整,在此提供 $V_{DD}=5V$ 时的参数值。
 - 2. 5V 表格列下面提供的是全压条件下的参数值。当应用电压范围是 $3.3V\sim5.5V$ 时,建议烧录器电压固定在 5V。

内部低速振荡器 - LIRC - 频率精准度

符号	参数	3	则试条件	最小	典型	最大	单位
		V_{DD}	温度	取小	典型	取入	中江
	5V	25°C	25.6	32	38.4		
$f_{ m LIRC}$	f _{LIRC}	2 237 5 537	25°C	12.8	32	41.6	kHz
		3.3V~5.5V	-40°C~85°C	8	32	60	
tstart	LIRC 启动时间	_	25°C	_	_	100	μs

工作频率电气特性曲线图

Rev.1.00 10 2020-03-16

系统上电时间电气特性

Ta=-40°C~85°C

符号	参数		测试条件	最小	典型	最大	单位
17.75	少 数	$\mathbf{V}_{ extsf{DD}}$	条件	取小	典型	取入	半江
	系统启动时间	_	$f_{SYS}=f_H\sim f_H/64, f_H=f_{HIRC}$	_	16	_	t_{SYS}
	(从 fsys off 的状态下唤醒)	_	$f_{SYS} = f_{SUB} = f_{LIRC}$	_	2	_	tsys
	系统启动时间	_	$f_{SYS}=f_H\sim f_H/64, f_H=f_{HIRC}$	_	2	_	tsys
tsst	(从 f _{sys} on 的状态下唤醒)	_	$f_{SYS} = f_{SUB} = f_{LIRC}$	_	2	_	t_{SYS}
	系统速度切换时间 (快速模式→低速模式或 低速模式→快速模式)	_	f_{HIRC} off \rightarrow on		16		$t_{ m HIRC}$
	系统复位延迟时间 (上电复位或 LVR 硬件复位)	_	RR _{POR} =5V/ms	25	50	150	
$t_{ m RSTD}$	系统复位延迟时间 (LVRC/WDTC 软件复位)	_	_	23	30	130	ms
	系统复位延迟时间 (WDT溢出复位)	_	_	8.3	16.7	50.0	ms
t _{SRESET}	软件复位最小脉宽		_	45	90	375	μs

- 注: 1. 系统启动时间参数里提到的 f_{sys} on/off 状态取决于工作模式类型以及所选的系统时钟振荡器。更多相关细节请参考系统工作模式章节。
 - 2. t_{HIRC} 等符号所表示的时间单位,是其对应频率值的倒数,相关频率值在前面表格有说明。例如 t_{HIRC} =1/ f_{HIRC} , t_{SYS} =1/ f_{SYS} 等。
 - 3. 若 LIRC 被选择作为系统时钟源且在休眠模式下 LIRC 关闭,则上面表格中对应 tsst 数值还需加上 LIRC 频率表格里提供的 LIRC 启动时间 tstart。
 - 4. 系统速度切换时间实际上是指新使能的振荡器的启动时间。

输入/输出电气特性

Ta=-40°C~85°C

符号	参数		测试条件	最小	典型	最大	单位
175	参数	V _{DD}	条件	取小	典型	取入	半江
V _{IL}	 I/O 口低电平输入电压	5V	_	0	_	1.5	V
V IL		_	_	0	_	$0.2V_{\text{DD}}$	V
$V_{ m IH}$	 I/O 口高电平输入电压	5V	_	3.5	_	5.0	V
V IH		_		$0.8V_{\mathrm{DD}}$	_	V_{DD}	V
I_{OL}	 I/O 口灌电流	3.3V	$V_{OL}=0.1V_{DD}$	16	32	_	mA
IOL		5V	VOL-0.1 VDD	32	65	_	IIIA
		3.3V]	-0.7	-1.5		
			SLEDC[m+1: m]=00B (m=0, 2)	-1.5	-2.9	_	
		3.3V	$V_{OH}=0.9V_{DD},$	-1.3	-2.5		
т		5V	SLEDC[m+1: m]=01B (m=0, 2)	-2.5	-5.1		4
Іон	I/O 口源电流	3.3V	V _{OH} =0.9V _{DD} ,	-1.8	-3.6	_	mA
		5V	SLEDC[m+1: m]=10B (m=0, 2)	-3.6	-7.3	_	
		3.3V	,	-4	-8		
		5V	SLEDC[m+1: m]=11B (m=0, 2)	-8	-16		
D	1/0 口下控中間(1)	3.3V		20	60	100	kΩ
R_{PH}	H I/O 口上拉电阻 (1)			10	30	50	K22
$R_{ m PL}$	PA4 引脚下拉电阻 ⁽²⁾	3.3V		5	10	15	kΩ
INPL	TA4 7 M TY 电阻 (*)	5V		5	10	15	K22
ILEAK	输入漏电流	5V	$V_{IN}=V_{DD}$ 或 $V_{IN}=V_{SS}$	_	_	±1	μΑ
t_{TC}	TC 时钟输入最小脉宽	_	_	25	_	_	ns

- 注: $1. R_{PH}$ 内部上拉电阻值的计算方法是: 引脚接地并设置为输入且使能上拉电阻功能,然后在特定电源电压下测量该引脚上电流,最后电压除以测量的电流值从而得到此上拉电阻值 R_{PH} 。
 - 2. R_{PL} 内部下拉电阻值的计算方法是:将引脚接 V_{DD} 并设置为输入且除能上拉电阻功能,然后在特定电源电压下测量该引脚上的电流,最后电压除以测量的电流值从而得到此下拉电阻值 R_{PL} 。

存储器电气特性

Ta=-40°C~85°C,除非另有说明。

					. 1.4.	> • . •	
符号	参数		测试条件	最小	典型	最大	单位
175		V_{DD}	条件	取小	典型	取入	半江
Flash 程	星序存储器						
$t_{ m DEW}$	擦/写时间-Flash 程序存储器	_	_	_	2	3	ms
I_{DDPGM}	V _{DD} 电压下烧录 / 擦除电流	_	_	_	_	5.0	mA
EP	电容耐久性	_	_	10K	_	_	E/W
$t_{ m RETD}$	ROM 数据保存时间	_	Ta=25°C	_	40	_	Year
RAM 娄	牧据存储器						
V_{DR}	RAM 数据保存电压		单片机处于休眠模式	1.0			V

Rev.1.00 12 2020-03-16

LVR 电气特性

 $Ta=-40^{\circ}C\sim85^{\circ}C$

符号	参数		测试条件	最小	典型	最大	单位
1ग फ	少 奴	V _{DD}	条件	取小	兴 至	取入	丰江
V _{LVR}	低电压复位电压	_	LVR 使能,电压选择 3.15V	-5%	3.15	+5%	V
T	I _{LVRBG} 工作电流	3.3V	LVR 使能,V _{LVR} =3.15V	_	_	15	
I _{LVRBG}	上 1	5V	LVK 使起,V _{LVR} —3.13 V	_	15	25	μA
I_{LVR}	LVR 使能的额外电流	5V	_	_	_	25	μΑ
t_{LVR}	产生 LVR 复位的低电 压最短保持时间	_	_	140	600	1000	μs

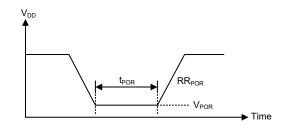
过电流保护电气特性

Ta=-40°C~85°C

<i>አ</i> ታ 🗆	\$ *h		测试条件	□ ,1,		日上	₩ /÷
符号	参数	V _{DD}	条件	最小	典型	最大	单位
$V_{ m DD}$	工作电压	_	_	3.3	_	5.5	V
		3.3V	OCPEN[1:0]=01B	_	300	500	
Іоср	OCP 工作电流	5V	OCPCHY=1 G[2:0]=000B		450	600	μΑ
		3.3V	未校准	-15		15	
1 7	以	5V	(OCPCOF[4:0]=10000B)	-15	_	15	17
V _{OS_CMP}	比较器输入失调电压	3.3V	松雅丘	-2	_	2	mV
		5V	校准后	-2	_	2	
1 7	迟滞	3.3V	_	10	40	60	
$V_{ m HYS}$	心 神	5V	_	10	40	60	mV
17			_	V _{SS}		V _{DD} - 1.4	V
V _{CM_CMP}	比较器共模电压范围	5V	_	Vss	_	V _{DD} - 1.4	V
		3.3V	未校准	-15	_	15	
3 7		5V	(OCPOOF [5:0]=100000B)	-15	_	15	17
Vos_opa	OPA 输入失调电压	3.3V	松州丘	-2	_	2	mV
		5V	校准后	-2	_	2	
17	OPA 共模电压范围	3.3V	_	Vss	_	V _{DD} - 1.4	V
V _{CM_OPA}	OPA 共侯电压池由	5V	v –		_	V _{DD} - 1.4	V
3 7		3.3V	_	V _{SS} + 0.1	_	V _{DD} - 0.1	3.7
Vor OPA	OPA 最大输出电压范围	5V	_	V _{SS} + 0.1	_	V _{DD} - 0.1	V
Go	PGA 增益精准度	3.3V		-5	_	5	0/
Ga	FUA 增益相性及	5V	──── 所有增益		_	5	%

符号	女 米h		测试条件	最小	ж жі	日上	单位
符号		$\mathbf{V}_{ extsf{DD}}$	Y _{DD} 条件		典型	最大	中山工
Ro	R2R 输出电阻	3.3V	_	_	10	_	kΩ
Ko	K2K 制山电阻	5V	_	_	10	_	K52
DNI	非线性微分误差	3.3V	DACW -V	-1.5	_	+1.5	I CD
DNL	非线性侧角 医左	5V	DAC V _{REF} =V _{DD}	-1	_	+1	LSB
INII	北华州和公里芜	3.3V	DACV -V	-2	_	+2	I CD
INL	非线性积分误差	5V	DAC V _{REF} =V _{DD}	-1.5		+1.5	LSB

N型 MOSFET 电气特性


Ta=-40°C~85°C,除非另有说明。

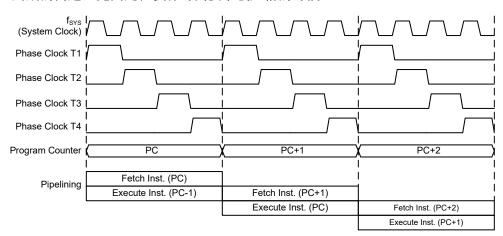
符号	参数	Ŋ	则试条件	最小	典型	最大	单位
		V_{DD}	温度	取小,	一类 企	取入	丰江
V _{DS(ON)}	漏源通态击穿电压	5V	25°C	_	32	_	V
V _{DS(OFF)}	漏源断态击穿电压	5V	25°C	_	36	_	V
I _{D(AVG)}	漏极电流	5V	25°C	_	600	_	mA
R _{DS(ON)}	漏源通态电阻	5V	25°C	_	150	_	mΩ

上电复位电气特性

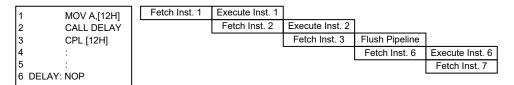
Ta=25°C

符号	会料	测试条件		最小	典型	最大	单位			
17.75	号		▼数 V _{DD}		条件	取小	兴 空	取入	半业	
V _{POR}	上电复位电压	_	_	_	_	100	mV			
RR _{POR}	上电复位电压速率	_	_	0.035	_	_	V/ms			
t _{POR}	V _{DD} 保持为 V _{POR} 的最小时间	_	_	1	_	_	ms			

Rev.1.00 14 2020-03-16


系统结构

内部系统结构是 Holtek 单片机具有良好性能的主要因素。由于采用 RISC 结构,该单片机具有高运算速度和高性能的特点。通过流水线的方式,指令的获取和执行同时进行,此举使得除了跳转和调用指令需多一个指令周期外,其它大部分指令都能分别在一个指令周期内完成。8位 ALU 参与指令集中所有的运算,它可完成算术运算、逻辑运算、移位、递增、递减和分支等功能,而内部的数据路径则是以通过累加器和 ALU 的方式加以简化。有些寄存器在数据存储器中被实现,且可以直接或间接寻址。简单的寄存器寻址方式和结构特性,确保了在提供具有最大可靠度和灵活性的 I/O 控制系统时,仅需要少数的外部器件。使得该单片机适用于低成本和大量生产的控制应用。


时序和流水线结构

主系统时钟由 HIRC 或 LIRC 振荡器提供,它被细分为 T1~T4 四个内部产生的非重叠时序。在 T1 时间,程序计数器自动加一并抓取一条新的指令。剩下的时间 T2~T4 完成译码和执行功能,因此,一个 T1~T4 时钟周期构成一个指令周期。虽然指令的抓取和执行发生在连续的指令周期,但单片机流水线结构会保证指令在一个指令周期内被有效执行。除非程序计数器的内容被改变,如子程序的调用或跳转,在这种情况下指令将需要多一个指令周期的时间去执行。

如果指令牵涉到分支,例如跳转或调用等指令,则需要两个指令周期才能完成 指令执行。需要一个额外周期的原因是程序先用一个周期取出实际要跳转或调 用的地址,再用另一个周期去实际执行分支动作,因此用户需要特别考虑额外 周期的问题,尤其是在执行时间要求较严格的时候。

系统时序和流水线

指令捕捉

程序计数器

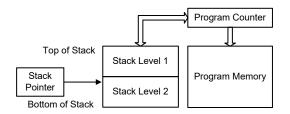
在程序执行期间,程序计数器用来指向下一个要执行的指令地址。除了"JMP"和"CALL"指令需要跳转到一个非连续的程序存储器地址之外,它会在每条

指令执行完成以后自动加一。只有较低的8位,即所谓的程序计数器低字节寄存器PCL,可以被用户直接读写。

当执行的指令要求跳转到不连续的地址时,如跳转指令、子程序调用、中断或复位等,单片机通过加载所需要的地址到程序寄存器来控制程序,对于条件跳转指令,一旦条件符合,在当前指令执行时取得的下一条指令将会被舍弃,而由一个空指令周期来取代。

程序计数器					
高字节 低字节 (PCL)					
PC8	PCL7~PCL0				

程序计数器


程序计数器的低字节,即程序计数器的低字节寄存器 PCL,可以通过程序控制,且它是可以读取和写入的寄存器。通过直接写入数据到这个寄存器,一个程序短跳转可直接执行,然而只有低字节的操作是有效的,跳转被限制在存储器的当前页中,即 256 个存储器地址范围内,当这样一个程序跳转要执行时,会插入一个空指令周期。程序计数器的低字节可由程序直接进行读取,PCL 的使用可能引起程序跳转,因此需要额外的指令周期。

堆栈

堆栈是一个特殊的存储空间,用来存储程序计数器中的内容。该单片机有 2 层堆栈,堆栈既不是数据部分也不是程序空间部分,而且它既不是可读取也不是可写入的。当前层由堆栈指针 (SP) 加以指示,同样也是不可读写的。在子程序调用或中断响应服务时,程序计数器的内容被压入到堆栈中。当子程序或中断响应结束时,返回指令 (RET 或 RETI) 使程序计数器从堆栈中重新得到它以前的值。当一个芯片复位后,堆栈指针将指向堆栈顶部。

如果堆栈已满,且有非屏蔽的中断发生,中断请求标志会被置位,但中断响应将被禁止。当堆栈指针减少(执行RET或RETI),中断将被响应。这个特性提供程序设计者简单的方法来预防堆栈溢出。然而即使堆栈已满,CALL指令仍然可以被执行,而造成堆栈溢出。使用时应避免堆栈溢出的情况发生,因为这可能导致不可预期的程序分支指令执行错误。

若堆栈溢出,则首个存入堆栈的程序计数器数据将会丢失。

算术逻辑单元 – ALU

算术逻辑单元是单片机中很重要的部分,执行指令集中的算术和逻辑运算。 ALU 连接到单片机的数据总线,在接收相关的指令码后执行需要的算术与逻辑操作,并将结果存储在指定的寄存器,当 ALU 计算或操作时,可能导致进位、借位或其它状态的改变,而相关的状态寄存器会因此更新内容以显示这些改变,ALU 所提供的功能如下:

- 算术运算: ADD, ADDM, ADC, ADCM, SUB, SUBM, SBC, SBCM, DAA
- 逻辑运算: AND, OR, XOR, ANDM, ORM, XORM, CPL, CPLA

Rev.1.00 16 2020-03-16

- 移位运算: RRA, RR, RRCA, RRC, RLA, RL, RLCA, RLC
- 递增和递减: INCA, INC, DECA, DEC
- 分支判断: JMP, SZ, SZA, SNZ, SIZ, SDZ, SIZA, SDZA, CALL, RET, RETI

与立即数相关的指令仅对 4-bit 低半字节有效。因此,在对一个 8-bit 进行立即数操作时,应先使用 SWAP 指令处理高半字节,使高 4 位为 "0H",接着直接赋值给低 4 位。

要实现"MOVA,03CH"操作,应执行下面三条指令:

MOV A, 03H ; High nibble immediate date processed first

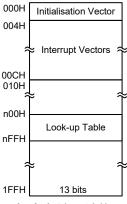
SWAP ACC

MOV A, OCH ; Low nibble immediate date processed later

要实现"RETA, 0C3H"操作,应执行下面三条指令:

MOV A, OCH ; High nibble immediate date processed first

SWAP ACC


RET A, 03H ; Low nibble immediate date processed later

Flash 程序存储器

程序存储器用来存放用户代码即储存程序。程序存储器为 Flash 类型意味着可以多次重复编程,方便用户使用同一芯片进行程序的修改。使用适当的单片机编程工具,此单片机提供用户灵活便利的调试方法和项目开发规划及更新。

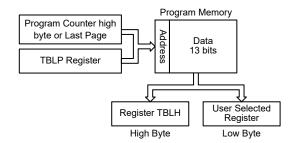
结构

程序存储器的容量为 512×13 位,程序存储器用程序计数器来寻址,其中也包含数据、表格和中断入口。数据表格可以设定在程序存储器的任何地址,由表格指针来寻址。

程序存储器结构

特殊向量

程序存储器内部某些地址保留用做诸如复位和中断入口等特殊用途。地址 000H 是芯片复位后的程序起始地址。在芯片复位之后,程序将跳到这个地址并开始执行。



杳表

程序存储器中的任何地址都可以定义成一个表格,以便储存固定的数据。使用表格时,表格指针必须先行设定,其方式是将表格的地址放在表格指针寄存器 TBLP 中。该寄存器定义表格总的地址。

在设定完表格指针后,表格数据可以使用如"TABRD [m]"或"TABRDL [m]"等指令分别从程序存储器查表读取。当这些指令执行时,程序存储器中表格数据低字节,将被传送到使用者所指定的数据存储器 [m],程序存储器中表格数据的高字节,则被传送到 TBLH 特殊寄存器,而高字节中未使用的位将被读取为"0"。

下图是杳表中寻址/数据流程:

查表范例

以下范例说明表格指针和表格数据如何被定义和执行。这个例子使用的表格数据用 ORG 伪指令储存在存储器中。ORG 指令的值"100H"指向的地址是程序存储器中最后一页的起始地址。表格指针低字节寄存器的初始值设为 06H,这可保证从数据表格读取的第一笔数据位于程序存储器地址 106H,即最后一页起始地址后的第六个地址。值得注意的是,假如"TABRD [m]"指令被使用,则表格指针指向 TBLP 寄存器指定的地址。在这个例子中,表格数据的高字节等于零,而当"TABRD [m]"指令被执行时,此值将会自动的被传送到 TBLH 寄存器。

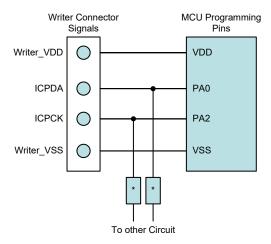
TBLH 寄存器为只读寄存器,不能重新储存,若主程序和中断服务程序都使用表格读取指令,应该注意它的保护。使用表格读取指令,中断服务程序可能会改变 TBLH 的值,若随后在主程序中再次使用这个值,则会发生错误,因此建议避免同时使用表格读取指令。然而在某些情况下,如果同时使用表格读取指令是不可避免的,则在执行任何主程序的表格读取指令前,中断应该先除能,另外要注意的是所有与表格相关的指令,都需要两个指令周期去完成操作。

表格读取程序范例

```
tempreg1 db ?
                   ; temporary register #1
tempreg2 db ?
                   ; temporary register #2
mov a,00h
swap acc
mov a,06h
                   ; initialise low table pointer - note that this address
                   ; is referenced
                   ; to the last page or present page
mov tblp,a
                   ; transfers value in table referenced by table pointer,
tabrd tempreg1
                   ; data at program memory address "106H" transferred to
                    ; tempreg1 and TBLH
dec tblp
                    ; reduce value of table pointer by one
```

Rev.1.00 18 2020-03-16

在线烧录 - ICP


Flash 型程序存储器提供用户便利地对同一芯片进行程序的更新和修改。

另外,Holtek 单片机提供 4 线接口的在线烧录方式。用户可将进行过烧录或未经过烧录的单片机芯片连同电路板一起制成,最后阶段进行程序的更新和程序的烧录,在无需去除或重新插入芯片的情况下方便地保持程序为最新版。

Holtek 烧录器引脚名称	MCU 在线烧录引脚名称	引脚说明
ICPDA	PA0	串行数据 / 地址烧录
ICPCK	PA2	时钟烧录
VDD	VDD	电源
VSS	VSS	地

程序存储器可以通过4线的接口在线进行烧录。其中一个引脚用于数据串行下载或上传、另一个引脚用于串行时钟、两条用于提供电源。芯片在线烧写的详细使用说明超出此文档的描述范围,将由专门的参考文献提供。

烧录过程中,用户必须确保 ICPDA 和 ICPCK 这两个引脚没有连接至其它输出脚。

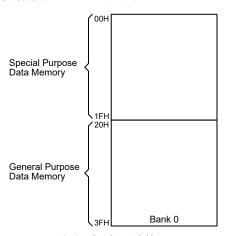
注: * 可能为电阻或电容。若为电阻则其值必须大于 1kΩ, 若为电容则其必须小于 1nF。

片上调试 - OCDS

EV 芯片 BP45V0044 用于 BP45F0044 单片机仿真。此 EV 芯片提供片上调试功能 (OCDS) 用于开发过程中的单片机调试。除了片上调试功能方面,EV 芯片和实际 MCU 在功能上几乎是兼容的。用户可将 OCDSDA 和 OCDSCK 引脚连接至 Holtek HT-IDE 开发工具,从而实现 EV 芯片对实际 IC 的仿真。OCDSDA 引脚为 OCDS 数据 / 地址输入 / 输出脚,OCDSCK 引脚为 OCDS 时钟输入脚。当

用户用 EV 芯片进行调试时,实际单片机 OCDSDA 和 OCDSCK 引脚上的其它 共用功能无效。关于 OCDS 功能的详细描述,请参考 "Holtek e-Link for 8-bit MCU OCDS 用户手册"文件。

Holtek e-Link 引脚	EV 芯片引脚	引脚描述
OCDSDA	OCDSDA	片上调试串行数据/地址输入/输出
OCDSCK	OCDSCK	片上调试时钟输入
VDD	VDD	电源
VSS	VSS	地


数据存储器

数据存储器是内容可更改的 8 位 RAM 内部存储器,用来储存临时数据。

结构

数据存储器分为两种类型,第一种是特殊功能数据存储器。这些寄存器有固定的地址且与单片机的正确操作密切相关。大多特殊功能寄存器都可在程序控制下直接读取和写入,但有些被加以保护。第二种数据存储器是做一般用途使用,都可在程序控制下进行读取和写入。

该单片机数据存储器的起始地址是"00H"。特殊功能数据存储器的地址范围为00H~1FH,而通用数据存储器地址范围为20H~3FH。

数据存储器结构

通用数据存储器

所有的单片机程序需要一个读/写的存储区,让临时数据可以被储存和再使用,该 RAM 区域就是通用数据存储器。这个数据存储区可让使用者进行读取和写入的操作。使用位操作指令可对个别的位做置位或复位的操作,极大地方便了用户在数据存储器内进行位操作。

特殊功能数据存储器

这个区域的数据存储器是存放特殊寄存器的,这些寄存器与单片机的正确操作 密切相关,大多数的寄存器可进行读取和写入,只有一些是被写保护而只能读 取的,相关细节的介绍请参看有关特殊功能寄存器的部分。要注意的是,任何 读取指令对存储器中未定义的地址进行读取将返回 "00H"。

Rev.1.00 20 2020-03-16

	Bank 0
0011	IAR0
00H	
01H	MP0
02H	SCC
03H	HIRCC
04H	WDTC
05H	ACC
06H	PCL
07H	TBLP
H80	TBLH
09H	INTC
HAC	STATUS
овн	
CH	LVRC
DDH	VBGC
DEH	PAS
0FH	RSTFC
10H	TBC
11H	SLEDC
	_
12H	TMR
13H	TMRC
14H	PA
15H	PAC
16H	PAPU
17H	PAWU
18H	PWMP
19H	PWMD
1AH	PWMC
1BH	OCPC0
1CH	OCPC1
1DH	OCPDA
1EH	OCPOCAL
1FH	OCPCCAL
20H	
3FH	
	: Unused, read as 00H

特殊功能数据存储器结构

特殊功能寄存器

大部分特殊功能寄存器的细节将在相关功能章节描述,但有几个寄存器需在此章节单独描述。

间接寻址寄存器 - IAR0

间接寻址寄存器 IAR0 的地址虽位于数据存储区,但其并没有实际的物理地址。间接寻址的方法使用间接寻址寄存器和存储器指针做数据操作,以取代定义实际存储器地址的直接存储器寻址方法。在间接寻址寄存器 IAR0 上的任何动作,将对间接寻址指针 MP0 所指定的存储器地址产生对应的读 / 写操作。它们总是成对出现,IAR0 和 MP0 只可以访问 Bank 0。因为这些间接寻址寄存器不是实际存在的,直接读取将返回"00H"的结果,而直接写入此寄存器则不做任何操作。

存储器指针-MP0

该单片机提供了存储器指针 MP0。由于该指针在数据存储器中能像普通的寄存器一般被操作,因此提供了一个寻址和数据追踪的有效方法。当对间接寻址寄存器进行任何操作时,单片机指向的实际地址是由存储器指针 MP0 所指定的地址,此时间接寻址寄存器 IAR0 用于访问 Bank 0 中的数据。

以下例子说明如何清除一个具有 4 RAM 地址的区块,它们已事先定义成地址 adres1 到 adres4。

间接寻址程序范例

```
data .section 'data'
adres1 db ?
adres2 db ?
adres3 db ?
adres4 db ?
block db?
code .section at 0 'code'
org 00h
start:
    mov a,00h
                        ;
                       ;
    swap acc
    mov a, 04h
                       ; set size of block
    mov block, a
    mov a, offset adres1 ; Accumulator loaded with first RAM address
   mov MPO, a
                        ; set memory pointer with first RAM address
loop:
    clr IAR0
                       ; clear the data at address defined by MPO
    inc MP0
                       ; increase memory pointer
    sdz block
                        ; check if last memory location has been cleared
    jmp loop
continue:
```

在上面的例子中有一点值得注意,即并没有确定 RAM 地址。

累加器 - ACC

对任何单片机来说,累加器是相当重要的,且与 ALU 所完成的运算有密切关系,所有 ALU 得到的运算结果都会暂时存在 ACC 累加器里。若没有累加器,ALU 必须在每次进行如加法、减法和移位的运算时,将结果写入到数据存储器,这样会造成程序编写和时间的负担。另外数据传送也常常牵涉到累加器的临时储存功能,例如在使用者定义的一个寄存器和另一个寄存器之间传送数据时,由于两寄存器之间不能直接传送数据,因此必须通过累加器来传送数据。

Rev.1.00 22 2020-03-16

程序计数器低字节寄存器 - PCL

为了提供额外的程序控制功能,程序计数器低字节设置在数据存储器的特殊功能区域内,程序员可对此寄存器进行操作,很容易的直接跳转到其它程序地址。直接给 PCL 寄存器赋值将导致程序直接跳转到程序存储器的某一地址,然而由于寄存器只有8位长度,因此只允许在本页的程序存储器范围内进行跳转,而当使用这种运算时,要注意会插入一个空指令周期。

表格寄存器 - TBLP, TBLH

TBLP 特殊功能寄存器对存储在程序存储器中的表格进行操作。TBLP 为表格指针,指向表格数据存储的地址。它的值必须在任何表格读取指令执行前加以设定,由于它的值可以被如"INC"或"DEC"的指令所改变,这就提供了一种简单的方法对表格数据进行读取。表格读取数据指令执行之后,表格数据高字节存储在 TBLH 中。其中要注意的是,表格数据低字节会被传送到使用者指定的地址。

状态寄存器 - STATUS

该 8-bit 的状态寄存器由零标志位 (Z)、进位标志位 (C)、辅助进位标志位 (AC)、溢出标志位 (OV)、暂停标志位 (PDF) 和看门狗定时器溢出标志位 (TO) 组成。这些算术/逻辑操作和系统运行标志位是用来记录单片机的运行状态。

除了 PDF 和 TO 标志外,状态寄存器中的位像其它大部分寄存器一样可以被改变。任何数据写入到状态寄存器将不会改变 TO 或 PDF 标志位。另外,执行不同的指令后,与状态寄存器有关的运算可能会得到不同的结果。TO 标志位只会受系统上电、看门狗溢出或执行"CLR WDT"或"HALT"指令影响。PDF 标志位只会受执行"HALT"或"CLR WDT"指令或系统上电影响。

Z、OV、AC和C标志位通常反映最近运算的状态。

- C: 当加法运算的结果产生进位,或减法运算的结果没有产生借位时,则 C 被置位,否则 C 被清零,同时 C 也会被带进位的移位指令所影响。
- AC: 当低半字节加法运算的结果产生进位,或低半字节减法运算的结果没有产生进位,AC被置位,否则AC被清零。
- Z: 当算术或逻辑运算结果是零时, Z被置位, 否则 Z被清零。
- OV: 当运算结果高两位的进位状态异或结果为 1 时, OV 被置位, 否则 OV 被清零。
- PDF: 系统上电或执行 "CLR WDT"指令会清零 PDF, 而执行"HALT"指令则会置位 PDF。
- TO: 系统上电或执行"CLR WDT"或"HALT"指令会清零 TO, 而当 WDT 溢出则会置位 TO。

另外,当进入一个中断程序或执行子程序调用时,状态寄存器不会自动压入到 堆栈保存。假如状态寄存器的内容是重要的且子程序可能改变状态寄存器的话, 则需谨慎的去做正确的储存。

• STATUS 寄存器

Bit	7	6	5	4	3	2	1	0
Name	_	_	TO	PDF	OV	Z	AC	С
R/W	_	_	R	R	R/W	R/W	R/W	R/W
POR	_	_	0	0	X	X	X	X

"x": 未知

Bit 7~6 未定义,读为"0"

Bit 5 TO: 看门狗溢出标志位

0: 系统上电或执行 "CLR WDT" 或 "HALT" 指令后

1: 看门狗溢出发生

Bit 4 PDF: 暂停标志位

0: 系统上电或执行 "CLR WDT" 指令后

1: 执行"HALT"指令

OV: 溢出标志位

0: 无溢出

1: 运算结果高两位的进位状态异或结果为1

Bit 2 **Z:** 零标志位

0: 算术或逻辑运算结果不为0

1: 算术或逻辑运算结果为0

Bit 1 AC: 辅助进位标志位

0: 无辅助进位

1: 在加法运算中低四位产生了向高四位进位,或减法运算中低四位不发生从 高四位借位

Bit C: 进位标志位

0: 无进位

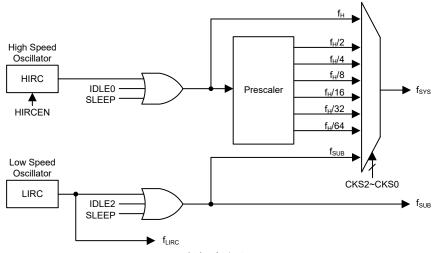
1: 如果在加法运算中结果产生了进位,或在减法运算中结果不发生借位

C标志位也受循环移位指令的影响。

振荡器

不同的振荡器选择可以让使用者在不同的应用需求中实现更大范围的功能。振荡器的灵活性使得在速度和功耗方面可以达到最优化。振荡器操作是通过相关的控制寄存器完成的。

振荡器概述


振荡器除了作为系统时钟源,还作为看门狗定时器和时基中断的时钟源。完全 集成的内部振荡器不需要任何外围器件。它们提供的高速和低速系统振荡器具 有较宽的频率范围。较高频率的振荡器提供更高的性能,但要求有更高的功率, 反之亦然。动态切换快慢系统时钟的能力使单片机具有灵活而优化的性能/功 耗比,此特性对功耗敏感的应用领域尤为重要。

类型	名称	频率		
内部高速 RC	HIRC	16MHz		
内部低速 RC	LIRC	32kHz		

振荡器类型

系统时钟配置

该单片机有两个系统振荡器,包括一个高速振荡器和一个低速振荡器。高速振荡器为内部 16MHz 高速振荡器 HIRC,低速振荡器为内部 32kHz 低速振荡器 LIRC。使用高速或低速振荡器作为系统时钟的选择是通过设置 SCC 寄存器中的 CKS2~CKS0 位决定的。

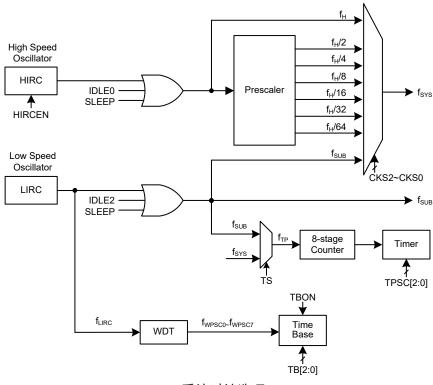
系统时钟配置

内部高速 RC 振荡器 – HIRC

内部 RC 振荡器是一个集成的系统振荡器,无需其它外部器件。内部 RC 振荡器频率固定为 16 MHz。芯片在制造时进行调整且内置频率补偿电路,使得振荡频率因 V_{DD} 、温度以及芯片制成工艺不同的影响减至最低程度。

内部 32kHz 振荡器 - LIRC

内部 32kHz 系统振荡器是一个低频振荡器,无需外部元件。芯片在制造时进行调整且内部含有频率补偿电路,使得振荡器因电源电压、温度及芯片制成工艺不同的影响减至最低。


工作模式和系统时钟

现今的应用要求单片机具有较高的性能及尽可能低的功耗,这种矛盾的要求在便携式电池供电的应用领域尤为明显。高性能所需要的高速时钟将增加功耗,反之亦然。该单片机提供高、低速两种时钟源,它们之间可以动态切换,用户可通过优化单片机操作来获得最佳性能/功耗比。

系统时钟

单片机为 CPU 和外围功能操作提供了两种不同的时钟源。用户使用寄存器编程可获取多种时钟,进而使系统时钟获取最大的应用性能。

主系统时钟可来自高频时钟源 f_H 或低频时钟源 f_{SUB} ,通过 SCC 寄存器中的 CKS2~ CKS0 位进行选择。低频系统时钟源来自 LIRC 振荡器。其它系统时钟还有高速系统振荡器的分频 $f_H/2\sim f_H/64$ 。

系统时钟选项

注: 当系统时钟源 f_{SYS} 由 f_H 切换为 f_{SUB} 时,可以通过设置相应的高速振荡器使能控制位,选择停止以节省耗电,或者继续振荡,为外围电路提供 $f_{H^{\sim}}f_H/64$ 频率的时钟源。

系统工作模式

单片机有6种不同的工作模式,每种有它自身的特性,根据应用中不同的性能和功耗要求可选择不同的工作模式。单片机正常工作模式有两种:快速模式和低速模式。剩余的4种工作模式:休眠模式、空闲模式0、空闲模式1和空闲模式2用于单片机CPU关闭时以节省耗电。

Rev.1.00 26 2020-03-16

工作模式	CDII		寄存器设	是置	c	£	r	£	
上 TF 快入	CPU	FHIDEN	FSIDEN	CKS2~CKS0	fsys	fн	f _{SUB}	flirc	
快速模式	On	X	X	000~110	$f_H \sim f_H / 64$	On	On	On	
低速模式	On	X	X	111	$f_{ m SUB}$	On/Off ⁽¹⁾	On	On	
空闲模式 0	Off	0	1	000~110	Off	Off	On	On	
工州俣八0	Oll			111	On	Oli	Oli		
空闲模式1	Off	1	1	XXX	On	On	On	On	
空闲模式 2	Off	1	0	000~110	On	On	Off	On	
工州快八 2	Oli	1	0	111	Off	On	Оп	On	
休眠模式	Off	0	0	XXX	Off	Off	Off	On/Off ⁽²⁾	

"x": 无关

- 注: 1. 在低速模式中, fu 开启或关闭由相应的振荡器使能位控制。
 - 2. 在休眠模式中, flirc 开启或关闭由 WDT 功能使能或除能控制。

快速模式

这是主要的工作模式之一,单片机的所有功能均可在此模式中实现且系统时钟由一个高速振荡器提供。该模式下单片机正常工作的时钟源来自 HIRC 振荡器。高速振荡器频率可被分为 1~64 的不等比率,实际的比率由 SCC 寄存器中的 CKS2~CKS0 位选择。单片机使用高速振荡器分频作为系统时钟可减少工作电流。

低速模式

此模式的系统时钟虽为较低速时钟源,但单片机仍能正常工作。该低速时钟源可来自 fsub, 而 fsub 可来自于 LIRC 振荡器。

休眠模式

执行 HALT 指令后且 SCC 寄存器中的 FHIDEN 和 FSIDEN 位都为低时,系统进入休眠模式。在休眠模式中,CPU 停止运行, f_{SUB} 停止为外围功能提供时钟。若看门狗定时器功能使能, f_{LIRC} 继续运行。

空闲模式 0

执行 HALT 指令后且 SCC 寄存器中的 FHIDEN 位为低、FSIDEN 位为高时,系统进入空闲模式 0。在空闲模式 0中,CPU 停止,但低速振荡器会开启以驱动一些外围功能。

空闲模式1

执行 HALT 指令后且 SCC 寄存器中的 FHIDEN 和 FSIDEN 位都为高时,系统进入空闲模式 1。在空闲模式 1中,CPU 停止,但高速和低速振荡器都会开启以确保一些外围功能继续工作。

空闲模式2

执行 HALT 指令后且 SCC 寄存器中的 FHIDEN 位为高、FSIDEN 位为低时,系统进入空闲模式 2。在空闲模式 2中,CPU 停止,但高速振荡器会开启以确保一些外围功能继续工作。

控制寄存器

寄存器 SCC 和 HIRCC 用于控制系统时钟和相应的振荡器配置。

寄存器				1	<u> </u>			
名称	7	6	5	4	3	2	1	0
SCC	CKS2	CKS1	CKS0	_	_	_	FHIDEN	FSIDEN
HIRCC		_	_	_	_	_	HIRCF	HIRCEN

系统工作模式控制寄存器列表

• SCC 寄存器

Bit	7	6	5	4	3	2	1	0
Name	CKS2	CKS1	CKS0	_	_	_	FHIDEN	FSIDEN
R/W	R/W	R/W	R/W	_	_	_	R/W	R/W
POR	0	0	1	_	_	_	0	0

Bit 7~5 CKS2~CKS0: 系统时钟选择位

 $\begin{array}{c} 000: \;\; f_H \\ 001: \;\; f_{H}/2 \\ 010: \;\; f_{H}/4 \\ 011: \;\; f_{H}/8 \\ 100: \;\; f_{H}/16 \\ 101: \;\; f_{H}/32 \\ 110: \;\; f_{H}/64 \end{array}$

111: f_{SUB}

这三位用于选择系统时钟源。除了 f_H 或 f_{SUB} 提供的系统时钟源外,也可使用高频振荡器的分频作为系统时钟。

Bit 4~2 未定义,读为"0"

Bit 1 FHIDEN: CPU 关闭时高频振荡器控制位

0: 除能 1: 使能

此位用来控制在 CPU 执行 HALT 指令关闭后高速振荡器是被激活还是停止。

Bit 0 FSIDEN: CPU 关闭时低频振荡器控制位

0: 除能 1: 使能

此位用来控制在 CPU 执行 HALT 指令关闭后低速振荡器是运行还是停止。

• HIRCC 寄存器

Bit	7	6	5	4	3	2	1	0
Name	_	_	_	_	_	_	HIRCF	HIRCEN
R/W	_	_	_	_	_	_	R	R/W
POR	_	_	_	_	_	_	0	1

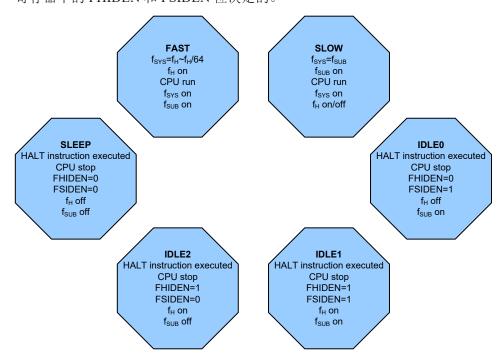
Bit 7~2 未定义,读为"0"

Bit 1 HIRCF: HIRC 振荡器稳定标志位

0: HIRC 未稳定 1: HIRC 稳定

此位用于表明 HIRC 振荡器是否稳定。HIRCEN 位置高使能 HIRC 振荡器,或者通过应用程序改变 HIRC 频率选择位时,HIRCF 位会先被清零,待 HIRC 振荡器稳定后会被置高。

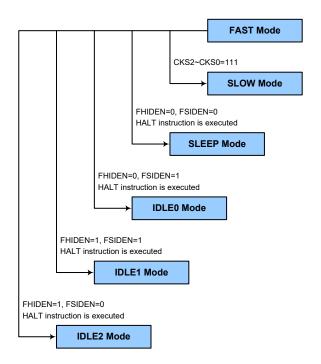
Bit 0 HIRCEN: HIRC 振荡器使能控制位


0: 除能 1: 使能

工作模式切换

单片机可在各个工作模式间自由切换,使得用户可根据所需选择最佳的性能/功耗比。用此方式,对单片机工作的性能要求不高的情况下,可使用较低频时钟以减少工作电流,在便携式应用上延长电池的使用寿命。

简单来说,快速模式和低速模式间的切换仅需设置 SCC 寄存器中的 CKS2~CKS0 位即可实现,而快速模式/低速模式与休眠模式/空闲模式间的切换经由 HALT 指令实现。当 HALT 指令执行后,单片机是否进入空闲模式或休眠模式由 SCC 寄存器中的 FHIDEN 和 FSIDEN 位决定的。



快速模式切换到低速模式

系统运行在快速模式时使用高速系统振荡器,因此较为耗电。可通过设置 SCC 寄存器中的 CKS2~CKS0 位为"111"使系统时钟切换至运行在低速模式下。此时将使用低速系统振荡器以节省耗电。用户可在对性能要求不高的操作中使用此方法以减少耗电。

低速模式的时钟源来自 LIRC 振荡器,因此要求选用的振荡器要在整个模式切换动作发生前稳定下来。

低速模式切换到快速模式

在低速模式时系统时钟来自 f_{SUB} 。 切换回快速模式时,需设置 CKS2~CKS0 位为 "000" ~ "110" 使系统时钟从 f_{SUB} 切换到 f_{H} ~ f_{H} /64。

然而,如果在低速模式下 fn 因未使用而关闭,那么从低速模式切换到快速模式时,它需要一定的时间来重新起振和稳定,可通过检测 HIRCC 寄存器中的 HIRCF 位进行判断,所需的高速系统振荡器稳定时间在系统上电时间电气特性中有说明。

进入休眠模式

进入休眠模式的方法仅有一种,即应用程序中执行"HALT"指令前需设置 SCC 寄存器中的 FHIDEN 和 FSIDEN 位都为"0"。在这种模式下,除了 WDT 以外的所有时钟和功能都将关闭。在上述条件下执行该指令后,将发生的情况如下:

- 系统时钟停止运行,应用程序停止在"HALT"指令处。
- 数据存储器中的内容和寄存器将保持当前值。
- 输入/输出口将保持当前值。
- 状态寄存器中暂停标志 PDF 将被置起,看门狗溢出标志 TO 将被清除。
- 如果 WDT 功能使能, WDT 将被清零并重新开始计数。如果 WDT 功能除能, WDT 将被清零并停止计数。

进入空闲模式 0

进入空闲模式 0 的方法仅有一种,即应用程序中执行"HALT"指令前需设置 SCC 寄存器中的 FHIDEN 位为"0"且 FSIDEN 位为"1"。在上述条件下执行 该指令后,将发生的情况如下:

- f_H时钟停止运行,应用程序停止在"HALT"指令处,但 f_{SUB}时钟将继续运行。
- 数据存储器中的内容和寄存器将保持当前值。
- 输入/输出口将保持当前值。
- 状态寄存器中暂停标志 PDF 将被置起,看门狗溢出标志 TO 将被清除。
- 如果 WDT 功能使能,WDT 将被清零并重新开始计数。如果 WDT 功能除能, WDT 将被清零并停止计数。

进入空闲模式1

进入空闲模式 1 的方法仅有一种,即应用程序中执行"HALT"指令前需设置 SCC 寄存器中的 FHIDEN 和 FSIDEN 位都为"1"。在上述条件下执行该指令后,将发生的情况如下:

- f_H 和 f_{SUB} 时钟开启,应用程序停止在"HALT"指令处。
- 数据存储器中的内容和寄存器将保持当前值。
- 输入/输出口将保持当前值。
- 状态寄存器中暂停标志 PDF 将被置起,看门狗溢出标志 TO 将被清除。
- 如果 WDT 功能使能, WDT 将被清零并重新开始计数。如果 WDT 功能除能, WDT 将被清零并停止计数。

进入空闲模式 2

进入空闲模式 2 的方法仅有一种,即应用程序中执行"HALT"指令前需设置 SCC 寄存器中的 FHIDEN 位为"1"且 FSIDEN 位为"0"。在上述条件下执行 该指令后,将发生的情况如下:

- f_H 时钟开启, f_{SUB} 时钟关闭,应用程序停止在"HALT"指令处。
- 数据存储器中的内容和寄存器将保持当前值。
- 输入/输出口将保持当前值。
- 状态寄存器中暂停标志 PDF 将被置起,看门狗溢出标志 TO 将被清除。

● 如果 WDT 功能使能, WDT 将被清零并重新开始计数。如果 WDT 功能除能, WDT 将被清零并停止计数。

待机电流的注意事项

由于单片机进入休眠或空闲模式的主要原因是将单片机的电流功耗降低到尽可能低,可能到只有几个微安的级别(空闲模式1和空闲模式2除外),所以如果要将电路的电流降到最低,电路设计者还应有其它的考虑。应该特别注意的是单片机的输入/输出引脚。所有高阻抗输入脚都必须连接到固定的高或低电平,因为引脚浮空会造成内部振荡并导致耗电增加。这也应用于有不同封装的单片机,因为它们可能含有未引出的引脚,这些引脚也必须设为输出或带有上拉电阻的输入。

另外还需注意单片机设为输出的 I/O 引脚上的负载。应将它们设置在有最小拉电流的状态或将它们和其它的 CMOS 输入一样接到没有拉电流的外部电路上。还应注意的是,如果选择 LIRC 振荡器,会导致耗电增加。

在空闲模式1和空闲模式2中,高速振荡器开启。若外围功能时钟源来自高速振荡器,额外的静态电流也可能会有几百微安。

唤醒

为降低功耗,可关闭 CPU 使单片机进入休眠模式或空闲模式。然而当单片机再次唤醒时,原来的系统时钟需重新起振、稳定且恢复正常工作需要一定的时间。系统进入休眠或空闲模式之后,可以通过以下几种方式唤醒:

- PA 口下降沿
- 系统中断
- WDT 溢出

当单片机执行 HALT 指令后单片机将进入空闲或休眠模式,PDF 将被置位。系统上电或执行清除看门狗的指令,会清零 PDF;若由 WDT 溢出唤醒,则会发生看门狗定时器复位。看门狗计数器溢出将会置位 TO 标志并唤醒系统,这种复位会重置程序计数器和堆栈指针,其它标志保持原有状态。

PA 口中的每个引脚都可以通过 PAWU 寄存器使能下降沿唤醒功能。PA 端口唤醒后,程序将在"HALT"指令后继续执行。如果系统是通过中断唤醒,则有两种可能发生。第一种情况是:相关中断除能或是中断使能且堆栈已满,则程序会在"HALT"指令之后继续执行。这种情况下,唤醒系统的中断会等到相关中断使能或有堆栈层可以使用之后才执行。第二种情况是:相关中断使能且堆栈未满,则中断可以马上执行。如果在进入休眠或空闲模式之前中断标志位已经被设置为"1",则相关中断的唤醒功能将无效。

Rev.1.00 32 2020-03-16

看门狗定时器

看门狗定时器的功能在于防止如电磁的干扰等外部不可控制事件,所造成的程 序不正常动作或跳转到未知的地址。

看门狗定时器时钟源

WDT 定时器时钟源来自于内部时钟 flirc, 而 flirc 的时钟源由内部低速振荡器 LIRC 提供。内部振荡器 LIRC 的频率大约为 32kHz,这个特殊的内部时钟周期 会随 VDD、温度和制成的不同而变化。看门狗定时器的时钟源可分频为 28~215 以提供更大的溢出周期,分频比由 WDTC 寄存器中的 WS2~WS0 位来决定。

看门狗定时器控制寄存器

WDTC 寄存器用于选择溢出周期、控制 WDT 功能的使能 / 除能以及单片机的 复位操作。

WDTC 寄存器

Bit	7	6	5	4	3	2	1	0
Name	WE4	WE3	WE2	WE1	WE0	WS2	WS1	WS0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	1	0	1	0	1	1	1

Bit 7~3 WE4~WE0: WDT 功能控制

> 10101: 除能 01010: 使能

其它值:单片机复位

若因外部环境噪声使这些位发生改变,单片机将复位。复位动作发生在 tsreset 延迟时间后,且 RSTFC 寄存器的 WRF 位将置为"1"。

WS2~WS0: WDT 溢出周期选择位 Bit 2~0

000: $[(2^8-2^0)\sim 2^8]/f_{LIRC}$

001: $[(2^9-2^1)\sim 2^9]/f_{LIRC}$

010: $[(2^{10}-2^2)\sim 2^{10}]/f_{LIRC}$

011: $[(2^{11}-2^3)\sim 2^{11}]/f_{LIRC}$

100: $[(2^{12}-2^4)\sim 2^{12}]/f_{LIRC}$ 101: $[(2^{13}-2^5)\sim 2^{13}]/f_{LIRC}$

110: $[(2^{14}-2^6)\sim 2^{14}]/f_{LIRC}$

111: $[(2^{15}-2^7)\sim 2^{15}]/f_{LIRC}$

这三位控制 WDT 时钟源的分频比,从而实现对 WDT 溢出周期的控制。

RSTFC 寄存器

Bit	7	6	5	4	3	2	1	0
Name	_	_	_	_	_	LVRF	LRF	WRF
R/W	_	_	_	_	_	R/W	R/W	R/W
POR	_	_	_	_	_	X	0	0

"x": 未知

Bit 7~3 未定义,读为"0"

Bit 2 LVRF: LVR 复位标志位

具体描述见低电压复位章节。

LRF: LVR 控制寄存器软件复位标志位 Bit 1

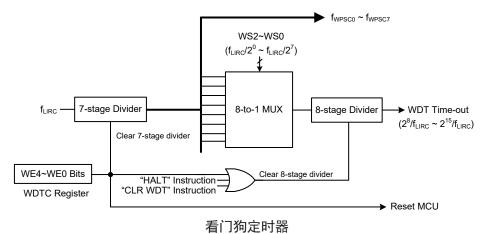
具体描述见低电压复位章节。

Bit 0 WRF: WDT 控制寄存器软件复位标志位

0: 未发生

1: 发生

当 WDT 控制寄存器软件复位发生时,此位被置为"1",且只能通过应用程序 清零。


看门狗定时器操作

当 WDT 溢出时,它产生一个单片机复位的动作。这也就意味着正常工作期间,用户需在应用程序中看门狗溢出前有策略地清看门狗定时器以防止其产生复位,可使用清除看门狗指令实现。无论什么原因,程序失常跳转到一个未知的地址或进入一个死循环,清除指令都不能被正确执行,此种情况下,看门狗将溢出以使单片机复位。看门狗定时器控制寄存器 WDTC 中的 WE4~WE0 位可提供使能/除能控制以及控制看门狗定时器复位操作。当 WE4~WE0 设置为"10101B"时除能 WDT 功能,而当设置为"01010B"时使能 WDT 功能。如果 WE4~WE0 设置为除"01010B"和"10101B"以外的值时,单片机将在tsrest 延迟时间后复位。上电后这些位初始化为"01010B"。

WE4~WE0 位	WDT 功能			
10101B	除能			
01010B	使能			
其它值	单片机复位			

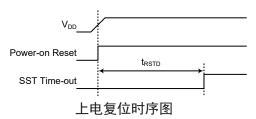
看门狗定时器使能 / 除能控制

程序正常运行时,WDT 溢出将导致芯片复位,并置位状态标志位 TO。若系统处于休眠或空闲模式,当 WDT 发生溢出时,状态寄存器中的 TO 应置位,仅 PC 和堆栈指针复位。有三种方法可以用来清除 WDT 的内容。第一种是 WDTC 寄存器软件复位,即将 WE4~WE0 位设置成除了 01010B 和 10101B 外的任意值;第二种是通过软件清除指令,而第三种是通过"HALT"指令。该单片机只使用一条清看门狗指令"CLR WDT"。因此只要执行"CLR WDT"便清除 WDT。当设置分频比为 2¹⁵ 时,溢出周期最大。例如,时钟源为 32kHz LIRC 振荡器,分频比为 2¹⁵ 时最大溢出周期约 1s,分频比为 2⁸ 时最小溢出周期约 8ms。

Rev.1.00 34 2020-03-16

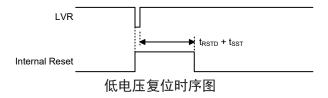
复位和初始化

复位功能是任何单片机中基本的部分,使得单片机可以设定一些与外部参数无关的先置条件。最重要的复位条件是在单片机首次上电以后,经过短暂的延迟,内部硬件电路使得单片机处于预期的稳定状态并开始执行第一条程序指令。上电复位以后,在程序执行之前,部分重要的内部寄存器将会被设定为预先设定的状态。程序计数器就是其中之一,它会被清除为零,使得单片机从最低的程序存储器地址开始执行程序。


另一种复位为低电压复位即 LVR 复位,在电源供应电压低于 LVR 设定值时,系统会产生 LVR 复位。此外还有一种复位为看门狗溢出单片机复位。不同方式的复位操作会对寄存器产生不同的影响。

复位功能

单片机的几种内部复位方式将在此处做具体介绍。


上电复位

这是最基本且不可避免的复位,发生在单片机上电后。除了保证程序存储器从 开始地址执行,上电复位也使得其它寄存器被设定在预设条件。所有的输入/ 输出端口控制寄存器在上电复位时会保持高电平,以确保上电后所有引脚被设 定为输入状态。

低电压复位 - LVR

单片机具有低电压复位电路,用来监测它的电源电压。当电源电压低于某一预定值时,它将复位单片机。例如在更换电池的情况下,单片机供应的电压可能会在 0.9V~V_{LVR} 之间,这时 LVR 将会自动复位单片机且 RSTFC 寄存器中的 LVRF 标志位置位。LVR 包含以下的规格:有效的 LVR 信号,即在 0.9V~V_{LVR} 的低电压状态的时间,必须超过 LVR 电气特性中 t_{LVR} 参数的值。如果低电压存在不超过 t_{LVR} 参数的值,则 LVR 将会忽略它且不会执行复位功能。寄存器 LVRC 可提供 LVR 功能使能 / 除能控制以及控制单片机复位操作。当 LVRC 寄存器设置为 10100101B 时,LVR 功能将除能,当 LVRC 寄存器设置为 01011010B 时,在快速模式和低速模式下,低电压复位功能总是使能且 V_{LVR} 固定电压值 3.15V。若 LVRC 的值由于不利的环境因素如噪声而改变为除"10100101B"和"01011010B"以外的值时,单片机将在一段延迟时间 t_{SRESET} 后复位,此时 RSTFC 寄存器中的 LRF 位将被置为 1。上电后该寄存器的默认值为 01011010B。注意当单片机进入空闲或休眠模式,LVR 功能将自动关闭。

• LVRC 寄存器

Bit	7	6	5	4	3	2	1	0
Name	LVS7	LVS6	LVS5	LVS4	LVS3	LVS2	LVS1	LVS0
R/W								
POR	0	1	0	1	1	0	1	0

Bit 7~0 LVS7~LVS0: LVR 电压选择

0011010: 3.15V 10100101: 除能

其它值: 复位单片机 - 寄存器复位为 POR 值。

当上述定义的相应的低电压出现,且低电压保持时间超过 t_{LVR} 值,之后将会产生单片机复位。单片机复位后寄存器中的值与复位前保持不变。

除了 01011010 和 10100101 外其它寄存器值也能导致单片机复位。复位操作会在 tsreset 时间后执行。注意的是此处单片机复位后,寄存器的值将恢复到上电复位值。

• RSTFC 寄存器

Bit	7	6	5	4	3	2	1	0
Name	_	_	_	_	_	LVRF	LRF	WRF
R/W	_	_	_	_	_	R/W	R/W	R/W
POR	_	_	_	_	_	X	0	0

"x": 未知

Bit 7~3 未定义,读为"0"

Bit 2 LVRF: LVR 复位标志位

0: 未发生 1: 发生

当特定的低电压复位条件发生时,此位被置为"1",且只能通过应用程序清零。

Bit 1 LRF: LVRC 寄存器软件复位标志位

0: 未发生

1: 发生

如果 LVRC 寄存器包含任何非定义的 LVR 电压值,此位被置为"1",这类似于软件复位功能,且只能通过应用程序清零。

Bit 0 WRF: WDTC 寄存器软件复位标志位

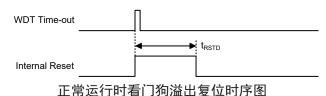
具体描述见看门狗定时器控制寄存器章节。

● VBGC 寄存器

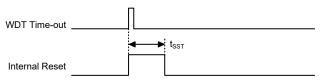
Bit	7	6	5	4	3	2	1	0
Name	_	_	_	_	VBGEN	_	_	_
R/W	_	_	_	_	R/W	_	_	_
POR	_	_	_	_	0	_	_	_

Bit 7~4 未定义,读为"0"

Bit 3 VBGEN: 损耗参考使能 / 除能控制位


0: 除能 1: 使能

Bit 2~0 未定义,读为"0"


正常运行时看门狗溢出复位

在快速模式或低速模式发生看门狗溢出复位时,看门狗溢出标志位 TO 将被设为"1"。

休眠或空闲时看门狗溢出复位

休眠或空闲时看门狗溢出复位和其它种类的复位有些不同。除了程序计数器与堆栈指针将被清"0"及 TO 被设为"1"外,绝大部分的条件保持不变。图中tssr 的详细说明请参考系统上电时间电气特性。

休眠或空闲时看门狗溢出复位时序图

复位初始状态

不同的复位形式以不同的途径影响复位标志位。这些标志位,即 PDF 和 TO 位存放在状态寄存器中,由休眠或空闲模式功能或看门狗计数器等几种控制器操作控制。复位标志位如下所示:

TO	PDF	复位条件
0	0	上电复位
u	u	快速模式或低速模式时 LVR 复位
1	u	快速模式或低速模式时的 WDT 溢出复位
1	1	空闲或休眠模式时的 WDT 溢出复位

"u"代表不改变

在单片机上电复位之后,各功能单元初始化的情形,列于下表。

项目	复位后情况
程序计数器	清除为零
中断	所有中断被除能
看门狗定时器, 时基	都清除,且 WDT 重新计数
定时 / 事件计数器	定时 / 事件计数器关闭
输入/输出口	I/O 口设为输入模式
堆栈指针	堆栈指针指向堆栈顶端

不同的复位形式对单片机内部寄存器的影响是不同的。为保证复位后程序能正常执行,了解寄存器在特定条件复位后的设置是非常重要的。下表即为不同方式复位后内部寄存器的状况。

寄存器	上电复位	WDT 溢出 (正常运行)	WDT 溢出 (空闲 / 休眠)
IAR0	xxxx xxxx	uuuu uuuu	uuuu uuuu
MP0	xxxx xxxx	xxxx xxxx	uuuu uuuu
SCC	00100	001 00	uuuuu
HIRCC	0 1	0 1	u u
WDTC	0101 0111	0101 0111	uuuu uuuu
ACC	xxxx xxxx	uuuu uuuu	uuuu uuuu
PCL	0000 0000	0000 0000	0000 0000
TBLP	xxxx xxxx	uuuu uuuu	uuuu uuuu
TBLH	x xxxx	u uuuu	u uuuu
INTC	-000 0000	-000 0000	-uuu uuuu
STATUS	00 xxxx	1u uuuu	11 uuuu
LVRC	0101 1010	0101 1010	uuuu uuuu
VBGC	0	0	u
PAS	0 0000	0 0000	u uuuu
RSTFC	x 0 0	uuu	uuu
TBC	0000	0000	uuuu
SLEDC	0000	0000	uuuu
TMR	0000 0000	0000 0000	uuuu uuuu
TMRC	0000 1000	0000 1000	uuuu uuuu
PA	1 1111	1 1111	u uuuu
PAC	1 1111	1 1111	u uuuu
PAPU	0 0000	0 0000	u uuuu
PAWU	0 0000	0 0000	u uuuu
PWMP	0000 0000	0000 0000	uuuu uuuu
PWMD	0000 0000	0000 0000	uuuu uuuu
PWMC	0000 00	0000 00	uuuu uu
OCPC0	0000 00	0000 00	uuuu uu
OCPC1	00 0000	00 0000	uu uuuu
OCPDA	0000 0000	0000 0000	uuuu uuuu
OCPOCAL	0010 0000	0010 0000	uuuu uuuu
OCPCCAL	0001 0000	0001 0000	uuuu uuuu

注: "u"表示不改变

"x"表示未知

"-"表示未定义

输入/输出端口

Holtek 单片机的输入/输出口控制具有很大的灵活性。大部分引脚可在用户程序控制下被设定为输入或输出。所有引脚的上拉电阻设置以及指定引脚的唤醒设置也都由软件控制,这些特性也使得此单片机在广泛应用上都能符合开发的需求。

该单片机提供双向输入/输出口PA。这些端口在数据存储器有特定的地址,如特殊功能数据存储器表所示。所有I/O口用于输入输出操作。作为输入操作,输入引脚无锁存功能,也就是说输入数据必须在执行"MOVA,[m]",T2的上升沿准备好,m为端口地址。对于输出操作,所有数据都是被锁存的,且保持不变直到输出锁存被重写。

寄存器				位					
名称	7	6	5	4	3	2	1	0	
PA	_	_	_	PA4	PA3	PA2	PA1	PA0	
PAC	_	_	_	PAC4	PAC3	PAC2	PAC1	PAC0	
PAPU	_	_	_	PAPU4	PAPU3	PAPU2	PAPU1	PAPU0	
PAWU	_	_	_	PAWU4	PAWU3	PAWU2	PAWU1	PAWU0	

"一": 未定义, 读为"0"

输入/输出逻辑功能寄存器列表

上拉电阻

许多产品应用在端口处于输入状态时需要外加一个上拉电阻来实现上拉的功能。为了免去外部上拉电阻,当引脚规划为数字输入时,可由内部连接到一个上拉电阻。这些上拉电阻可通过相应的上拉控制寄存器来设置,它用一个PMOS 晶体管来实现上拉电阻功能。

需要注意的是,当 I/O 引脚设为数字输入或 NMOS 输出时,上拉功能才会受相关上拉控制寄存器控制开启,其它状态下上拉功能不可用。

PAPU 寄存器

Bit	7	6	5	4	3	2	1	0
Name		_	_	PAPU4	PAPU3	PAPU2	PAPU1	PAPU0
R/W	_	_	_	R/W	R/W	R/W	R/W	R/W
POR	_	_	_	0	0	0	0	0

Bit 7~5 未定义,读为"0"

Bit 4~0 PAPU4~PAPU0: PA 引脚上拉电阻控制位

0: 除能

1: 使能

PA4 信号包含一个内部下拉电阻,若上拉功能使能,将导致额外的耗电。注意,上电后 PAPU 寄存器的 PAPU4 位需固定为"0"。

PA 口唤醒

当使用暂停指令"HALT"迫使单片机进入休眠或空闲模式,单片机的系统时钟将会停止以降低功耗,此功能对于电池及低功耗应用很重要。唤醒单片机有很多种方法,其中之一就是使 PA 口的其中一个引脚从高电平转为低电平。这个功能特别适合于通过外部开关来唤醒的应用。PA 口的每个引脚可以通过设置 PAWU 寄存器来单独选择是否具有唤醒功能。

需要注意的是,只有当引脚被设置为通用输入功能输入类型且单片机处于空闲 / 休眠模式时,此功能可由唤醒控制寄存器控制。

● PAWU 寄存器

Bit	7	6	5	4	3	2	1	0
Name	_	_	_	PAWU4	PAWU3	PAWU2	PAWU1	PAWU0
R/W	_	_	_	R/W	R/W	R/W	R/W	R/W
POR	_	_	_	0	0	0	0	0

Bit 7~5 未定义,读为"0"

Bit 4~0 PAWU4~PAWU0: PA4~PA0 唤醒功能控制位

0: 除能 1: 使能

注意,上电后 PAWU4 位需固定为"0"。

输入/输出端口控制寄存器

每一个输入/输出口都具有各自的控制寄存器 PAC,用来控制输入/输出状态。从而每个 I/O 引脚都可以通过软件控制,动态的设置为 CMOS 输出或输入。所有的 I/O 端口的引脚都各自对应于 I/O 端口控制的某一位。若 I/O 引脚要实现输入功能,则对应的控制寄存器的位需要设置为"1"。这时程序指令可以直接读取输入脚的逻辑状态。若控制寄存器相应的位被设定为"0",则此引脚被设置为 CMOS 输出。当引脚设置为输出状态时,程序指令读取的是输出端口寄存器的内容。

注意,如果对输出口做读取动作时,程序读取到的是内部输出数据锁存器中的状态,而不是输出引脚上实际的逻辑状态。

PAC 寄存器

Bit	7	6	5	4	3	2	1	0
Name	_	_	_	PAC4	PAC3	PAC2	PAC1	PAC0
R/W	_	_	_	R/W	R/W	R/W	R/W	R/W
POR	_		_	1	1	1	1	1

Bit 7~5 未定义,读为"0"

Bit 4~0 PACn: PA 口引脚类型选择位

0: 除能

1: 使能

PA4 信号包含一个内部下拉电阻,若上拉功能使能,将导致额外的耗电。注意,上电后 PAC 寄存器的 PAC4 位需清零,将对应的线设置为输出,从而确保 MCU 和 MOSFET 信号内部正确连接。

输入/输出端口源电流控制

该单片机的每个引脚的源电流可由不同的源电流配置,通过相应的源电流选择位选择。仅当对应的引脚被设为CMOS输出时,其源电流选择位才有效。否则,这些选择位无效。用户可参考输入/输出电气特性章节为不同应用选择所需的源电流。

Rev.1.00 40 2020-03-16

• SLEDC 寄存器

Bit	7	6	5	4	3	2	1	0
Name	_	_	_	_	SLEDC3	SLEDC2	SLEDC1	SLEDC0
R/W	_	_	_	_	R/W	R/W	R/W	R/W
POR	_	_	_	_	0	0	0	0

Bit 7~4 未定义,读为"0"

Bit 3~2 **SLEDC3~SLEDC2**: PA4 引脚源电流选择位

00: 源电流 = Level 0 (最小)

01: 源电流 = Level 1

10: 源电流 = Level 2

11: 源电流 = Level 3 (最大)

Bit 1~0 SLEDC1~SLEDC0: PA3~PA0 引脚源电流选择位

00: 源电流 = Level 0 (最小)

01: 源电流 = Level 1

10: 源电流 = Level 2

11: 源电流 = Level 3 (最大)

引脚共用功能

引脚的多功能可以增加单片机应用的灵活性。有限的引脚个数将会限制设计者,而引脚的多功能将会解决很多此类问题。此外,这些引脚功能可以通过一系列寄存器进行设定。

引脚共用功能选择寄存器

封装中有限的引脚个数会对某些单片机功能造成影响。然而,引脚功能共用和引脚功能选择,使得小封装单片机具有更多不同的功能。单片机包含端口"A"输出功能选择寄存器 PAS,可以用来选择多功能共用引脚上的特定功能。

要注意的最重要一点是,确保所需的引脚共用功能被正确地选择和取消。对于大部分共用功能,要选择所需的引脚共用功能,首先应通过相应的引脚共用控制寄存器正确地选择该功能,然后再配置相应的外围功能设置以使能外围功能。但是,在设置相关引脚控制位时,一些数字输入引脚如 TC 引脚等,与对应的通用 I/O 口共用同一个引脚共用设置选项。要选择这个引脚功能,除了上述的必要的引脚共用控制和外围功能设置外,还必须将其对应的端口控制寄存器位设置为输入。要正确地取消引脚共用功能,首先应除能外围功能,然后再修改相应的引脚共用控制寄存器以选择其它的共用功能。

● PAS 寄存器

Bit	7	6	5	4	3	2	1	0
Name	_	_	_	PAS4	PAS3	PAS2	PAS1	PAS0
R/W	_	_	_	R/W	R/W	R/W	R/W	R/W
POR	_	_	_	0	0	0	0	0

Bit 7~5 未定义,读为"0"

Bit 4 PAS4: PA4 引脚共用功能选择

0: PA4 1: PWM

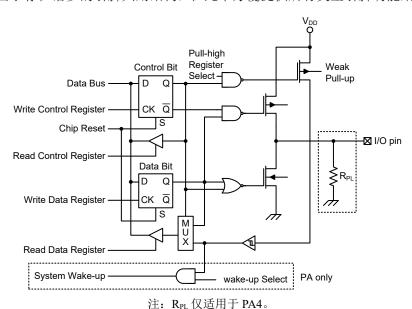
Bit 3 PAS3: PA3 引脚共用功能选择

0: PA3 1: OCPI

Bit 2 PAS2: PA2 引脚共用功能选择

0: PA2 1: PWMB

Bit 1 PAS1: PA1 引脚共用功能选择


0: PA1 1: 保留

Bit 0 PASO: PAO 引脚共用功能选择

0: PA0/TC 1: OCPCOUT

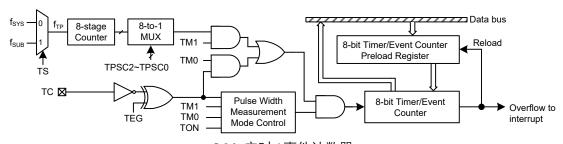
输入/输出引脚结构

下图为输入/输出引脚逻辑功能的内部结构图。具体输入/输出引脚的逻辑结构 图可能与此图不同,这里只是为了方便对 I/O 引脚逻辑功能的理解提供一个参 考。由于存在诸多的引脚共用结构,在此不方便提供所有类型引脚功能结构图。

逻辑功能输入/输出结构

编程注意事项

在编程中,最先要考虑的是端口的初始化。复位之后,所有的输入/输出数据及端口控制寄存器都将被设为逻辑高。所有输入/输出引脚默认为输入状态,而其电平则取决于其它相连接电路以及是否选择了上拉电阻。如果端口控制寄存器某些引脚位被设定输出状态,这些输出引脚会有初始高电平输出,除非数据寄存器端口在程序中被预先设定。设置哪些引脚是输入及哪些引脚是输出,可通过设置正确的值到适当的端口控制寄存器,或使用指令"SET [m].i"及"CLR [m].i"来设定端口控制寄存器中个别的位。注意,当使用这些位控制指令时,系统即将产生一个读-修改-写的操作。单片机需要先读入整个端口上的数据,修改个别的位,然后重新把这些数据写入到输出端口。


PA口的每个引脚都带唤醒功能。单片机处于休眠或空闲模式时,有很多方法可以唤醒单片机,其中之一就是通过 PA任一引脚电平从高到低转换的方式,可以设置 PA口一个或多个引脚具有唤醒功能。

Rev.1.00 42 2020-03-16

定时/事件计数器

定时/事件计数器在任何单片机中都是一个很重要的部分,便于程序设计者实现和时间有关的功能。该单片机包含一个8位可编程向上计数的定时/事件计数器,其时钟源可由外部输入或内部提供。该计数器包括3种工作模式,可以作为通用定时器、外部事件计数器或脉冲宽度测量使用。

8-bit 定时 / 事件计数器

定时/事件计数器输入时钟源

定时 / 事件计数器的时钟源可有多种选择,可以是内部时钟,也可以是外部引脚。当定时 / 事件计数器工作在定时器模式或脉冲宽度测量模式时,使用内部时钟作为时钟源。定时 / 事件计数器的内部时钟可来自 fsys 和 fsub 时钟分频,时钟来源由 TMRC 寄存器中的 TS 位选择,分频率通过 TPSC2~TPSC0 位设置。当定时 / 事件计数器在事件计数器模式时,使用外部时钟源,时钟源由外部 TC 引脚提供。每次外部引脚由高电平到低电平或由低电平到高电平(由 TEG 位决定)进行转换时,计数器增加一。

定时/事件计数器寄存器

定时/事件计数器相关的寄存器有两个。第一个是 TMR 寄存器,其包含了定时/事件计数器的实际值且可以预加载初始值。向 TMR 寄存器写入一个值,此值将会被写入定时/事件计数器。读取 TMR 寄存器将读取定时/事件计数器的内容。第二个是 TMRC 控制寄存器,用来定义定时/事件计数器的工作模式、选择内部时钟来源、控制计数器使能或除能以及选择时钟有效边沿。

寄存器	位									
名称	7	6	5	4	3	2	1	0		
TMRC	TM1	TM0	TS	TON	TEG	TPSC2	TPSC1	TPSC0		
TMR	D7	D6	D5	D4	D3	D2	D1	D0		

定时/事件计数器寄存器列表

定时器寄存器 - TMR

定时器寄存器 TMR 用于存放实际定时器值。在用作内部定时且收到一个内部时钟脉冲或用作外部计数且外部定时/事件计数器引脚发生状态跳变时,此寄存器值将会加一。定时器将从预载寄存器所载入的值开始计数,8-bit 的定时/事件计数器计数到 FFH 时,定时器溢出且会产生一个内部中断信号。定时器随后将从预载寄存器的值重新开始计数。

注意,为使定时器计数范围达到最大 FFH,预载寄存器需要先清为零。定时/事件计数器在关闭条件下,写数据到预载寄存器,会立即写入到实际的计数器中。若定时/事件计数器使能且正在计数,此时写入预载寄存器的任何新数据将保留在预载寄存器中,直到溢出发生时才被写入到实际计数器。

• TMR 寄存器

Bit	7	6	5	4	3	2	1	0
Name	D7	D6	D5	D4	D3	D2	D1	D0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	0

Bit 7~0 **D7~D0**: 定时器预载寄存器字节

定时器控制寄存器 - TMRC

Holtek 微控制器的定时器 / 事件计数器可工作于三种模式,由控制寄存器相关位决定。

定时器控制寄存器 TMRC 配合相应的定时器寄存器可控制定时 / 事件计数器的全部操作。在使用定时器之前,需要先正确地设置定时器控制寄存器,以便保证定时器能正确操作,而这个过程通常在程序初始化期间完成。

要选择计时器工作于三种模式中的哪一种,即定时器模式、事件计数器模式或脉冲宽度测量模式,定时器控制寄存器中的 TM1~TM0 位必须设置为所需的值。定时器控制寄存器的 TON 位用于定时器开关控制,该位设定为逻辑高时,计数器开始计数,而清零时则停止计数。当使用内部时钟时,时钟来源可以通过 TS 位选择来自 fsvs 或 fsuB 时钟,同时可以通过控制寄存器中的 TPSC2~TPSC0 位对选择的时钟源分频率进行设置。如果使用外部时钟源,则内部时钟设定位的选择无效。如果定时/事件计数器工作在事件计数器模式或脉冲宽度测量模式,TMRC 寄存器的 TEG 位可用来选择有效触发边沿。

• TMRC 寄存器

Bit	7	6	5	4	3	2	1	0
Name	TM1	TM0	TS	TON	TEG	TPSC2	TPSC1	TPSC0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	1	0	0	0

Bit 7~6 TM1~TM0: 定时 / 事件计数器工作模式选择

00: 未使用

01: 事件计数器模式

10: 定时器模式

11: 脉冲宽度测量模式

Bit 5 TS: 定时器时钟 f_{TP} 来源选择

0: fsys

1: f_{SUB}

Bit 4 TON: 定时 / 事件计数器计数使能控制

0: 除能

1: 使能

Bit 3 TEG: 定时 / 事件计数器有效边沿选择

事件计数器模式

0: 在上升沿计数

1: 在下降沿计数

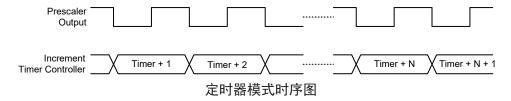
脉冲宽度测量模式

0: 在下降沿启动计数,在上升沿停止计数

1: 在上升沿启动计数,在下降沿停止计数

Bit 2~0 TPSC2~TPSC0: 定时器内部时钟选择

000: f_{TP} 001: f_{TP}/2 010: f_{TP}/4 011: f_{TP}/8 100: f_{TP}/16 101: f_{TP}/32 110: f_{TP}/64 111: f_{TP}/128

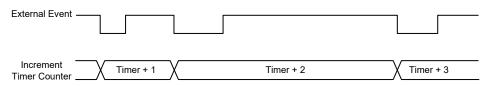

定时/事件计数器工作模式

定时/事件计数器可在三种工作模式下运行,即定时器模式、事件计数器模式或脉冲宽度测量模式。使用TMRC寄存器中的TM1和TM0位选择工作模式。

定时器模式

为使定时 / 事件计数器工作在定时器模式, TMRC 寄存器中的 TM1 和 TM0 位需要设置成"10"。在这个模式下,定时 / 事件计数器可以用来测量固定时间间隔,当定时 / 事件计数器发生溢出时,就会产生一个内部中断信号。

在定时器模式下,内部时钟 frr 作为定时器时钟源。内部时钟可通过 TMRC 寄存器中的 TS 位选择来自 fsys 或 fsub 时钟,选择的时钟可进一步分频,分频率由定时器控制寄存器 TMRC 中的 TPSC2~TPSC0 位设置。TMRC 寄存器中的 TON 位需要置高以使能定时器。每次内部时钟发生由高到低的电平转换时,定时器值加一;当 8 位计数器的值达到最大值 FFH 时将溢出,会产生中断信号且定时器会重新载入预载寄存器的值,然后继续计数。在此模式下,即使单片机处于空闲 / 休眠模式,若所选内部时钟还有效且发生定时器溢出,将产生定时器中断请求,可作为一种唤醒源。


事件计数器模式

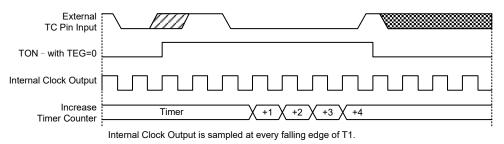
为使定时 / 事件计数器工作在事件计数器模式, TMRC 寄存器中的 TM1 和 TM0 位需要设置成"01"。在这个模式下可以通过定时 / 事件计数器来记录发生在 TC 引脚上的的外部逻辑变化事件的次数。

在事件计数器模式下,外部定时器 TC 引脚作为定时/事件计数器的时钟源。在设置完定时器控制寄存器其它位后,TMRC 寄存器中的 TON 位需要置高以使能定时/事件计数器。若有效边沿选择位 TEG 为低,则每次外部 TC 引脚接收到由低到高的电平转换时,计数器值加一。若 TEG 位为高,则每次 TC 引脚接收到由高到低的电平转换时,计数器值加一。当计数器计满时将溢出,并产生中断请求信号且定时/事件计数器会重新载入预载寄存器的值,然后继续计数。

外部定时器引脚 TC 需通过 I/O 端口控制寄存器设置为输入类型。注意,在事件计数器模式下,即使单片机处于空闲/休眠模式,定时/事件计数器将继续对外部 TC 引脚上发生的的逻辑事件变化进行计数。因此,当计数器溢出时,将产生一个定时器中断请求,可作为一种唤醒源。

事件计数器模式时序图 (TEG=1)

脉冲宽度测量模式


为使定时 / 事件计数器工作在脉冲宽度测量模式, TMRC 寄存器中的 TM1 和 TM0 需要设置为"11"。在这个模式下,定时 / 事件计数器可用于测量外部定时器引脚上的外部脉冲宽度。

在脉冲宽度测量模式下,内部时钟 frp 作为定时器时钟源。内部时钟可通过 TMRC 寄存器中的 TS 位选择来自 fsys 或 fsub 时钟,选择的时钟可进一步分频,分频率由定时器控制寄存器 TMRC 中的 TPSC2~TPSC0 位设置。外部定时器引脚 TC 还需通过 I/O 端口控制寄存器设置为输入引脚。在设置完定时器控制寄存器 TMRC 中的其它位后,TON 位需要置高以使能定时 / 事件计数器。然而,只有在 TC 引脚上接收到有效的逻辑转换边沿时,定时 / 事件计数器才真正开始计数。

当有效边沿选择位 TEG 设置为低时,每次 TC 引脚接收到由高到低的电平转换时定时/事件计数器将在内部选定的时钟源下开始计数,直到 TC 引脚回到它原来的高电平。此时使能位将自动清零以停止计数。而当 TEG 位为高时,每次外部定时器引脚接收到由低到高的电平转换时定时/事件计数器将开始计数,直到 TC 引脚回到它原来的低电平。同样使能位将自动清零以停止计数。注意,在脉冲宽度测量模式中,当 TC 引脚上的外部信号回到它原来的电平时,使能位将自动清零。而在其它两种模式,使能位只能通过应用程序清零。

可以通过程序读取定时/事件计数器当前值,从而获得 TC 引脚上接收信号的脉冲宽度。由于使能位已被复位为零,任何出现在外部定时器引脚上的电平变化将被忽略。直到使能位被程序重新置高,定时器才可开始重新测量外部脉冲。通过这种方式可以很容易地实现单次脉冲宽度测量。注意,在脉冲宽度测量模式下,定时/事件计数器是通过外部定时器引脚上的逻辑转换来控制,而非通过逻辑电平。当定时/事件计数器计满时将溢出,并产生中断请求信号且定时/事件计数器会重新载入预载寄存器的值,然后继续计数。

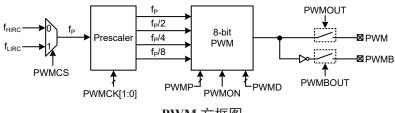
外部定时器引脚 TC 需通过 I/O 端口控制寄存器设置为输入类型。注意,在脉冲宽度测量模式下,即使单片机处于空闲/休眠模式,定时/事件计数器将继续对外部 TC 引脚上发生的逻辑事件变化进行计数。因此,当计数器溢出时,将产生一个定时器中断请求,可作为一种唤醒源。

脉冲宽度测量模式时序图 (TEG=0)

Rev.1.00 46 2020-03-16

编程注意事项

当定时/事件计数器工作在定时器模式时,内部系统时钟可作为定时器的时钟源,因此其与单片机所有操作都能同步。在这个模式下,当定时器寄存器计满溢出时,单片机将产生一个内部中断信号,使程序进入相应的内部中断向量。当工作在脉冲宽度测量模式时,定时器时钟源同样使用内部系统时钟,但仅在外部定时器输入引脚上出现正确的逻辑条件时定时器才会运行。由于这个外部事件没有与内部定时器时钟同步,单片机在下一个定时器时钟到来时才能看到这个外部事件。因此在测量值上可能有小的差异,需要程序设计者在程序应用时加以注意。同样的情况发生在定时器设置为事件计数器模式时,该模式下的时钟来源是外部事件,与定时器内部系统时钟不同步。


当读取定时/事件计数器值或写数据到预载寄存器时,计数时钟会被禁止以避免发生错误,但这样做可能会导致计数错误,所以程序设计者应加以注意。在第一次使用定时/事件计数器之前,要仔细确认是否正确地设定初始值。中断控制寄存器中的定时器中断使能位需正确地设置,否则定时器相关内部中断不被响应。定时器控制寄存器中的有效边沿选择位、定时器工作模式选择位和时钟源控制位需要正确地设置以确保定时器能正确配置为所需的应用。在开启定时/事件计数器之前,需要确保先载入定时/事件计数器寄存器的初始值。定时/事件计数器配置初始化后,可以使用定时器控制寄存器中的使能位来开启或关闭定时器。

当定时/事件计数器产生溢出,其中断请求标志位被置位,中断请求产生。若定时/事件计数器中断使能,跳转至相关中断向量。不管中断是否使能,若定时/事件计数器溢出,都会产生唤醒信号。因此在空闲/休眠模式下,若内部时钟源仍然处于有效状态或外部信号继续改变状态,则定时/事件计数器继续计数,若溢出则产生唤醒信号,将系统唤醒。为了防止这种唤醒,可以在执行"HALT"指令进入空闲/休眠模式之前将相应中断请求标志位置位。

脉冲宽度调制

该单片机包含一个8位的脉冲宽度调制功能。PWM 功能有互补式输出功能,可最大性提高应用的灵活性。

PWM 方框图

注: PWM 信号与 MOSFET 信号的 GATE 是内部相连的,需合理配置以控制 MOSFET 信号。

PWM 寄存器说明

脉宽调制通道的所有操作是通过三个寄存器来控制的,一个 PWM 周期寄存器 PWMP,一个 PWM 占空比寄存器 PWMD 和一个控制寄存器 PWMC。

寄存器	F存器 位							
名称	7	6	5	4	3	2	1	0
PWMC	PWMCK1	PWMCK0	PWMCS	PWMON	PWMOUT	PWMBOUT	_	_
PWMD	D7	D6	D5	D4	D3	D2	D1	D0
PWMP	D7	D6	D5	D4	D3	D2	D1	D0

PWM 寄存器列表

PWMC 寄存器

Bit	7	6	5	4	3	2	1	0
Name	PWMCK1	PWMCK0	PWMCS	PWMON	PWMOUT	PWMBOUT	_	_
R/W	R/W	R/W	R/W	R/W	R/W	R/W	_	_
POR	0	0	0	0	0	0	_	_

Bit 7~6 **PWMCK1~PWMCK0**: PWM 计数器时钟选择

00: f_P

01: $f_P/2$

10: $f_P/4$

11: $f_P/8$

Bit 5 PWMCS: PWM fp 计数器时钟源选择

0: fhire

1: flirc

Bit 4 **PWMON**: PWM 功能使能控制

0: 除能-PWM 计数器=0

1: 使能

当 PWMON 位清零时除能 PWM 功能。当多功能引脚选择作为 PWM 和 PWMB输出时,外部 PWM 引脚为浮空状态。

Bit 3 **PWMOUT:** PWM 输出使能控制

0: 除能

1: 使能

当多功能引脚选择作为 PWM 输出且 PWMOUT 位清零时,外部 PWM 引脚为浮空状态。

Rev.1.00 48 2020-03-16

Bit 2 **PWMBOUT**: PWMB 输出使能控制

0: 除能

1: 使能

当多功能引脚选择作为 PWMB 输出且 PWMBOUT 位清零时,外部 PWMB 引脚为浮空状态。

Bit 1~0 未定义,读为"0"

● PWMP 寄存器

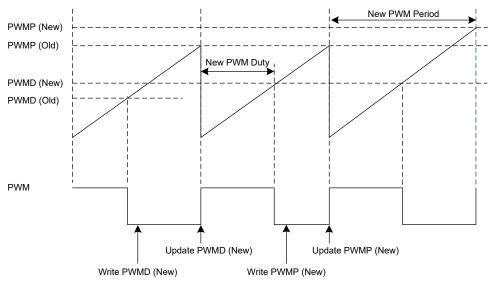
Bit	7	6	5	4	3	2	1	0
Name	D7	D6	D5	D4	D3	D2	D1	D0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	0

Bit 7~0 **D7~D0**: 8-bit PWM 周期寄存器

● PWMD 寄存器

Bit	7	6	5	4	3	2	1	0
Name	D7	D6	D5	D4	D3	D2	D1	D0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	0

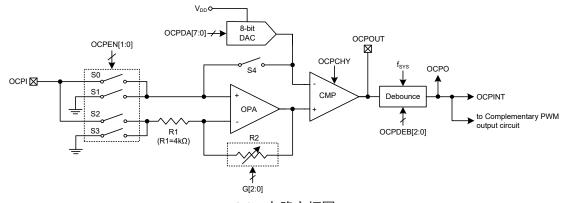
Bit 7~0 **D7~D0**: 8-bit PWM 占空比寄存器


若 PWMD 寄存器的值大于或等于 PWMP 寄存器的值, PWM 总是输出高电平。若 PWMD 寄存器的值等于 0, PWM 总是输出低电平。

PWM 操作

PWM 功能由 PWMC 寄存器的 PWMON 位控制,其互补式输出功能分别由 PWMOUT 位和 PWMBOUT 位控制。PWM 信号发生器由 PWMCS 位选择通过 f_{HIRC} 或 f_{LIRC} 时钟驱动,产生的 PWM 信号的占空比和周期由 8-bit PWMD和 PWMP 寄存器配置。PWM 信号的周期取决于 PWMC 寄存器 PWMCK1~PWMCK0 位设置的 PWM 计数器时钟并由 PWMP 寄存器决定。PWM 信号的占空比由 PWMD 寄存器的内容决定。

通过软件改变 PWMD 和 PWMP 寄存器的值后,当 PWM 计数器清零时新的数据将通过硬件更新。



8-bit PWM 波形

过电流保护 - OCP

该单片机中内建过电流保护功能,为应用提供了保护机制。为防止电池充电或负载电流超出指定的值,过电流保护电路通过内部运算放大器将从 OCPI 引脚输入的电流转换为对应的电压值信号,输入到比较器端与内部 8-bit D/A 转换器输出的电压值进行比较,从而判断是否有过电流状况。当检测到过电流时,若对应的中断使能,将会产生 OCP 中断。

OCP 电路方框图

OCP 操作

OCP 电路可对输入的电流进行监测,防止输入的电流超过指定的参考值。从OCPI 引脚输入的电流先被转换为一个电压信号并通过 OCP 电路内置的可编程增益远算放大器 PGA 进行放大 (1~50 倍增益,通过 OCPC1 寄存器的 G2~G0位设置)。通过设置 OCPC0 寄存器中的 OCPEN1 和 OCPEN0 位,PGA 可工作在同相,反相或输入失调校准模式。放大后的电压信号输入到内置的比较器电路并与 8-bit D/A 转换器提供的电压进行比较。其中 D/A 转换器参考电压固定来自内部电源 V_{DD}。比较器输出的 OCPCOUT 先通过去抖电路处理 (去抖周期由OCPC1 寄存器的 OCPDEB[2:0] 位选择),之后输出去抖后的 OCPO 信号,用于

Rev.1.00 50 2020-03-16

指明是否有过电流状况发生。OCPO 输出为 1,则表明有过电流情况,若无过电流情况,则 OCPO 输出为 0。一旦发生过电流情况,即 OCP 输入电流转换得到的电压高于参考电压,此时若相关中断使能,则会产生过电流保护中断。

OCP 寄存器介绍

OCP 功能的所有操作由一系列的寄存器控制。一个寄存器用于为整个 OCP 电路提供参考电压。两个寄存器用于运算放大器和比较器输入失调校准。两个控制寄存器用于控制 OCP 功能,D/A 转换器参考电压选择,PGA 增益选择,比较器去抖动时间以及迟滞功能。

寄存器		位										
名称	7	6	5	4	3	2	1	0				
OCPC0	OCPEN1	OCPEN0	OCPVRS1	OCPVRS0	OCPCHY	_	_	ОСРО				
OCPC1	_	_	G2	G1	G0	OCPDEB2	OCPDEB1	OCPDEB0				
OCPDA	D7	D6	D5	D4	D3	D2	D1	D0				
OCPOCAL	OCPOOFM	OCPORSP	OCPOOF5	OCPOOF4	OCPOOF3	OCPOOF2	OCPOOF1	OCPOOF0				
OCPCCAL	OCPCOUT	OCPCOFM	OCPCRSP	OCPCOF4	OCPCOF3	OCPCOF2	OCPCOF1	OCPCOF0				

OCP 寄存器列表

● OCPC0 寄存器

Bit	7	6	5	4	3	2	1	0
Name	OCPEN1	OCPEN0	OCPVRS1	OCPVRS0	ОСРСНҮ	_	_	OCPO
R/W	R/W	R/W	R/W	R/W	R/W	_	_	R
POR	0	0	0	0	0		_	0

Bit 7~6 **OCPEN1~OCPEN0**: OCP 工作模式选择

00: OCP 除能, S1 和 S3 on, S0 和 S2 off 01: 同相模式, S0 和 S3 on, S1 和 S2 off

10: 反相模式, S1和 S2 on, S0和 S3 off

11: 校准模式, S1和S3 on, S0和S2 off

Bit 5~4 OCPVRS1~OCPVRS0: OCP D/A 转换器参考电压选择

00: 来自 V_{DD} 01/10/11: 保留

这些位必须固定为"00"。

Bit 3 OCPCHY: OCP 比较器迟滞功能控制

0: 除能

1: 使能

Bit 2~1 未定义,读为"0"

Bit 0 OCPO: OCP 数字输出位

0: 没有过电流情况发生

1: 发生过电流情况

● OCPC1 寄存器

Bit	7	6	5	4	3	2	1	0
Name	_	_	G2	G1	G0	OCPDEB2	OCPDEB1	OCPDEB0
R/W	_	_	R/W	R/W	R/W	R/W	R/W	R/W
POR	_	_	0	0	0	0	0	0

Bit 7~6 未定义,读为"0"

Bit 5~3 **G2~G0**: R2/R1 比率选择

000: 单位增益缓冲器(同相模式)或 R2/R1=1(反相模式)

001: R2/R1=5 010: R2/R1=10 011: R2/R1=15 100: R2/R1=20 101: R2/R1=30 110: R2/R1=40 111: R2/R1=50

这三位用于选择 R2/R1 比率以获得反相或同相模式时的增益值。反相和同相模式中的 OCP PGA 增益计算公式请参见"输入电压范围"章节。

Bit 2~0 OCPDEB2~OCPDEB0: OCP 输出滤波去抖动时间选择

000: 旁路, 无去抖动

001: (1~2)×t_{DEB} 010: (3~4)×t_{DEB} 011: (7~8)×t_{DEB} 100: (15~16)×t_{DEB} 101: (31~32)×t_{DEB} 110: (63~64)×t_{DEB} 111: (127~128)×t_{DEB} 注: t_{DEB}=1/f_{SYS}。

• OCPDA 寄存器

Bit	7	6	5	4	3	2	1	0
Name	D7	D6	D5	D4	D3	D2	D1	D0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	0

Bit 7~0 **D7~D0:** OCP D/A 转换器输出电压控制位 OCP D/A 转换器输出 V_{OUT}=(D/A 转换器参考电压 / 256)×D[7:0]

• OCPOCAL 寄存器

Bit	7	6	5	4	3	2	1	0
Name	OCPOOFM	OCPORSP	OCPOOF5	OCPOOF4	OCPOOF3	OCPOOF2	OCPOOF1	OCPOOF0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	1	0	0	0	0	0

Bit 7 OCPOOFM: OCP 运算放大器工作模式选择位

0: 正常工作模式

1: 输入失调校准模式

此位用来选择 OCP 运算放大器输入校准功能。在设置此位之前,应先设置 OCPEN[1:0] 位为"11"后才能设置 OCPOOFM 为1以选择输入失调校准模式,之后需将 OCPCOFM 位清零,运算放大器工作于输入失调校准模式。更具体操作参考"运算放大器输入失调校准"章节。

Rev.1.00 52 2020-03-16

Bit 6 OCPORSP: OCP 运算放大器输入失调校准参考电压输入选择

0: 选择负输入作为参考输入

1: 选择正输入作为参考输入

Bit 5~0 OCPOOF5~OCPOOF0: 运算放大器输入失调电压校准值

这6位的寄存器位供运算放大器输入失调校准操作使用,并用于重新储存OCP运算放大器输入失调校准值。更多详细内容可参考"运算放大器输入失调校准"章节。

• OCPCCAL 寄存器

Bit	7	6	5	4	3	2	1	0
Name	OCPCOUT	OCPCOFM	OCPCRSP	OCPCOF4	OCPCOF3	OCPCOF2	OCPCOF1	OCPCOF0
R/W	R	R/W						
POR	0	0	0	1	0	0	0	0

Bit 7 OCPOUT: OCP比较器输出,正逻辑(只读)

0: 正端输入电压 < 负端输入电压

1: 正端输入电压 > 负端输入电压

此位用于当 OCP 工作在输入失调校准模式时,显示正输入电压是否大于负输入电压。若 OCPCOUT 为"1",表示正输入电压大于负输入电压,否则正输入电压小于负输入电压。

Bit 6 OCPCOFM: OCP 比较器工作模式选择位

0: 正常工作模式

1: 输入失调校准模式

此位用于选择 OCP 比较器输入失调校准功能。在设置此位之前,应先设置 OCPEN[1:0] 位为"11"然后才能设置 OCPCOFM 为1 以选择输入失调校准模式, 之后需将 OCPOOFM 位清零,比较器输入失调校准模式使能。更具体操作参考"比较器输入失调校准"章节。

Bit 5 OCPCRSP: 比较器输入失调校准参考电压输入选择

0: 选择负输入作为参考输入

1: 选择正输入作为参考输入

Bit 4~0 **OCPCOF4~OCPCOF0**: OCP 比较器输入失调校准值

这 5 位的寄存器位供比较器输入失调校准操作时使用,并用于重复储存 OCP 比较器输入失调校准值。更多详细内容可参考"比较器输入失调校准"章节。

输入电压范围

为了操作的灵活性,在不同的 PGA 操作模式下,OCPI 引脚上的输入电压可以为正或者为负。正输入或负输入电压的 PGA 输出基于不同的公式计算如下:

● 输入电压 V_{IN}>0, PGA 操作于同相模式下,PGA 输出可由以下公式计算:

$$V_{OUT} = (1 + \frac{R_2}{R_1}) \times V_{IN}$$

• 将 OCPEN[1:0] 的值设为 "01" 使 PGA 工作在同相模式,并设置 G[2:0] 的值为 "000"以选择单位增益,此时 PGA 将作为一个单位增益缓冲器,其输出与 $V_{\rm IN}$ 相等。

$$V_{OUT}=V_{IN}$$

● 输入电压 0>V_{IN}>-0.2V 时,工作在反相模式下的 PGA 以及 PGA 输出可由以下公式获得。注意,若输入电压为负,其值不可小于 -0.2V,否则会产生漏电流。

$$V_{OUT} = \frac{R_2}{R_1} \times V_{IN}$$

OCP 运算放大器和比较器失调校准

OCP 电路可工作于四种操作模式,通过 OCPEN[1:0] 字段进行选择。其中一种就是校准模式。在校准模式下,可对运算放大器和比较器进行失调校准。运算放大器和比较器输入失调校准步骤与设定如下所示。

运算放大器输入失调校准

- 步骤 1. 设置 OCPEN[1:0]=11, OCPOOFM=1, OCPCOFM=0 且 OCPORSP=1, OCP 将工作在运算放大器输入失调校准模式。该模式下, S4 为 off, OPA 到 OCPCOUT 的输出将绕开比较器。
- 步骤 2. 设置 OCPOOF[5:0]=000000B, 此时开始读 OCPCOUT 位。
- 步骤 3. OCPOOF[5:0] 的值加一,读 OCPCOUT 位。

若 OCPCOUT 位状态不变,则重复步骤 3 直到 OCPCOUT 位状态改变。

若 OCPCOUT 位状态改变,则记录下 OCPOOF 值为 Voosi,前往步骤 4。

- 步骤 4. 设置 OCPOOF[5:0]=111111B, 此时开始读 OCPCOUT 位。
- 步骤 5. OCPOOF[5:0] 的值减一,读 OCPCOUT 位。

若 OCPCOUT 位状态未改变,重复步骤 5 直到 OCPCOUT 位状态改变。

若 OCPCOUT 位状态改变,则记录下 OCPOOF 值为 Voos2,前往步骤 6。

步骤 6. 将运算放大器输入失调校准值 Voos, 重新存入 OCPOOF[5:0] 字段。此时失调校准步骤完成。

其中 Voos=(Voos1+Voos2)/2

比较器输入失调校准

- 步骤 1. 设置 OCPEN[1:0]=11, OCPCOFM=1 且 OCPOOFM=0, OCP 将工作在 比较器输入失调校准模式。该模式下 S4 为 on, D/A 转换器关闭 (S4 仅 用于比较器校准模式,在其它模式操作下为 off)。
- 步骤 2. 设置 OCPCOF[4:0]=00000B, 此时开始读 OCPCOUT 位。
- 步骤 3. OCPCOF[4:0] 的值加一, 读 OCPCOUT 位。

若 OCPCOUT 位状态不变,则重复步骤 3 直到 OCPCOUT 位状态改变。

若 OCPCOUT 位状态改变,则记录下 OCPCOF 值为 Vcosi,前往步骤 4。

- 步骤 4. 设置 OCPCOF[4:0]=11111B, 此时开始读 OCPCOUT 位。
- 步骤 5.OCPCOF[4:0] 的值减一, 读 OCPCOUT 位。

若 OCPCOUT 位状态未改变, 重复步骤 5 直到 OCPCOUT 位状态改变。

若 OCPCOUT 位状态改变,则记录下 OCPCOF 值为 V_{COS2},前往步骤 6。

步骤 6. 将比较器输入失调校准值 Vcos, 重新存入 OCPCOF[4:0] 字段。此时失调校准步骤完成。

其中 V_{COS}=(V_{COS1}+V_{COS2})/2

Rev.1.00 54 2020-03-16

中断

中断是单片机一个重要功能。当外部事件或内部功能如定时器溢出并且产生中断时,系统会暂时中止当前的程序而转到执行相对应的中断服务程序。此单片机仅提供三个内部中断功能。内部中断由内部功能产生,如定时/事件计数器、OCP和时基等。

中断寄存器

中断控制基本上是在一定单片机条件发生时设置请求标志位,应用程序中中断使能位的设置是通过位于特殊功能数据存储器中的一个寄存器控制的,即用于设置基本中断的 INTC 寄存器。

寄存器中含有中断控制位和中断请求标志位。中断控制位用于使能或除能各种中断,中断请求标志位用于存放当前中断请求的状态。它们都按照特定的模式命名,前面表示中断类型的缩写,紧接着的字母"E"代表使能/除能位,"F"代表请求标志位。

功能	使能位	请求标志	注释
总中断	EMI	_	_
时基	TBE	TBF	_
定时 / 事件计数器	TE	TF	_
ОСР	OCPE	OCPF	_

中断寄存器位命名模式

• INTC 寄存器

Bit	7	6	5	4	3	2	1	0
Name		TBF	TF	OCPF	TBE	TE	OCPE	EMI
R/W	_	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	_	0	0	0	0	0	0	0

Bit 7 未定义,读为"0"

Bit 6 TBF: 时基中断请求标志位

0: 无请求

1: 中断请求

Bit 5 TF: 定时 / 事件计数器中断请求标志位

0: 无请求

1: 中断请求

Bit 4 OCPF: OCP 中断请求标志位

0: 无请求

1: 中断请求

Bit 3 TBE: 时基中断控制位

0: 除能

1: 使能

Bit 2 TE: 定时 / 事件计数器中断控制位

0: 除能 1: 使能

1. Kill

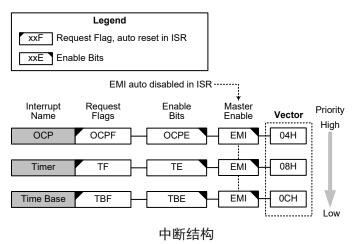
Bit 1 OCPE: OCP 中断控制位

0: 除能 1: 使能

Bit 0 EMI: 总中断控制位

0: 除能

1: 使能


中断操作

若中断事件条件产生,如定时器溢出等等,相关中断请求标志将置起。中断标志产生后程序是否会跳转至相关中断向量执行是由中断使能位的条件决定的。若使能位为"1",程序将跳至相关中断向量中执行;若使能位为"0",即使中断请求标志置起中断也不会发生,程序也不会跳转至相关中断向量执行。若总中断使能位为"0",所有中断都将除能。

当中断发生时,下条指令的地址将被压入堆栈。相应的中断向量地址加载至 PC 中。系统将从此向量取下条指令。中断向量处通常为跳转指令,以跳转到相应的中断服务程序。中断服务程序必须以"RETI"指令返回至主程序,以继续执行原来的程序。

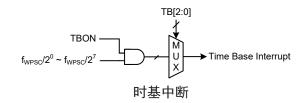
各个中断使能位以及相应的请求标志位,以优先级的次序显示在下图。所有中断源都有各自的中断向量。一旦中断子程序被响应,系统将自动清除 EMI 位,所有其它的中断将被屏蔽,这个方式可以防止任何进一步的中断嵌套。其它中断请求可能发生在此期间,虽然中断不会立即响应,但是中断请求标志位会被记录。

如果某个中断服务子程序正在执行时,有另一个中断要求立即响应,那么 EMI 位应在程序进入中断子程序后置位,以允许此中断嵌套。如果堆栈已满,即使此中断使能,中断请求也不会被响应,直到堆栈减少为止。如果要求立刻动作,则堆栈必须避免成为储满状态。请求同时发生时,执行优先级如下流程图所示。所有被置起的中断请求标志都可把单片机从休眠或空闲模式中唤醒,若要防止唤醒动作发生,在单片机进入休眠或空闲模式前应将相应的标志置起。

过电流保护中断

过电流保护 OCP 中断通过检测 OCP 输入电流控制。当检测到过电流情况时,过电流保护中断请求标志位 OCPF 被置位,OCP 中断请求发生。当总中断使能位 EMI 和 OCP 中断使能位 OCPE 被置位,允许程序跳转到相应的中断向量地址。当中断使能,堆栈未满且过电流情况发生时,将调用 OCP 中断向量子程序。当响应中断服务子程序时,相应的中断请求标志位 OCPF 会自动清零。EMI 位也会被清零以除能其它中断。

时基中断


时基中断提供一个固定周期的中断信号,由各自的定时器功能产生溢出信号控制。当各自的中断请求标志 TBF 被置位时,中断请求发生。当总中断使能位

Rev.1.00 56 2020-03-16

EMI 和时基使能位 TBE 被置位,允许程序跳转到各自的中断向量地址。当中断使能,堆栈未满且时基溢出时,将调用它们各自的中断向量子程序。当响应中断服务子程序时,相应的中断请求标志位 TBF 会自动复位且 EMI 位会被清零以除能其它中断。

时基中断的目的是提供一个固定周期的中断信号。其时钟源来自 WDT 的 fwpsco~fwpsco, 分频比可通过配置 TBC 寄存器中的相关位选择以获得更长的中断 周期。

● TBC 寄存器

Bit	7	6	5	4	3	2	1	0
Name	TBON	_	_	_	_	TB2	TB1	TB0
R/W	R/W	_	_	_	_	R/W	R/W	R/W
POR	0	_	_	_	_	0	0	0

Bit 7 TBON: 时基使能控制位

0: 除能

1: 使能

Bit 6~3 未定义,读为"0"

Bit 2~0 TB2~TB0: 时基 0 溢出周期选择位

 $000 \colon \ 2^0 / f_{WPSC}$

001: $2^{1}/f_{WPSC}$

010: $2^2/f_{WPSC}$

011: $2^3/f_{WPSC}$

100: $2^4/f_{WPSC}$

101: $2^{5}/f_{WPSC}$

110: $2^6/f_{WPSC}$

111: $2^7/f_{WPSC}$

定时/事件计数器中断

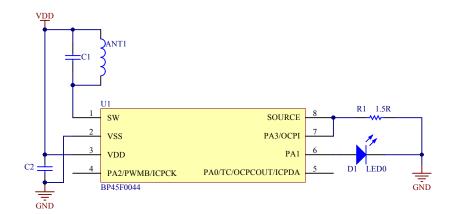
当定时 / 事件计数器溢出,相应的中断请求标志位 TF 被置位时定时 / 事件计数器中断请求产生。若要程序跳转到相应中断向量地址,总中断控制位 EMI 和相关定时器中断使能位 TE 位需先被置位。当中断使能,堆栈未满且定时 / 事件计数器溢出时,将调用相关的定时器中断向量子程序。当定时器中断响应,相应的中断请求标志位 TF 会自动复位且 EMI 位会被清零以除能其它中断。

中断唤醒功能

每个中断都具有将处于休眠或空闲模式的单片机唤醒的能力。当中断请求标志 由低到高转换时唤醒动作产生,其与中断是否使能无关。因此必须注意避免伪 唤醒情况的发生。若中断唤醒功能被除能,单片机进入休眠或空闲模式前相应 中断请求标志应被置起。中断唤醒功能不受中断使能位的影响。

编程注意事项

通过禁止相关中断使能位,可以屏蔽中断请求,然而,一旦中断请求标志位被设定,它们会被保留在中断控制寄存器内,直到相应的中断服务子程序执行或请求标志位被应用程序清除。


建议在中断服务子程序中不要使用 "CALL 子程序"指令。中断通常发生在不可预料的情况或是需要立刻执行的某些应用。假如只剩下一层堆栈且没有控制好中断,当 "CALL 子程序"在中断服务子程序中执行时,将破坏原来的控制序列。

所有中断在休眠或空闲模式下都具有唤醒功能,当中断请求标志发生由低到高的转变时都可产生唤醒功能。若要避免相应中断产生唤醒动作,在单片机进入休眠或空闲模式前需先将相应请求标志置为高。

当进入中断服务程序,系统仅将程序计数器的内容压入堆栈,如果中断服务程序会改变状态寄存器或其它的寄存器的内容而破坏控制流程,应事先将这些数据保存起来。

若从中断子程序中返回可执行 RET 或 RETI 指令。除了能返回至主程序外, RETI 指令还能自动设置 EMI 位为高,允许进一步中断。RET 指令只能返回至 主程序,清除 EMI 位,除能进一步中断。

应用电路

Rev.1.00 58 2020-03-16

指令集

简介

任何单片机成功运作的核心在于它的指令集,此指令集为一组程序指令码,用来指导单片机如何去执行指定的工作。在 Holtek 单片机中,提供了丰富且灵活的指令,共超过六十条,程序设计者可以事半功倍地实现它们的应用。

为了更加容易理解各种各样的指令码,接下来按功能分组介绍它们。

指令周期

大部分的操作均只需要一个指令周期来执行。分支、调用或查表则需要两个指令周期。一个指令周期相当于四个系统时钟周期,因此如果在 8MHz 的系统时钟振荡器下,大部分的操作将在 0.5μs 中执行完成,而分支或调用操作则将在 1μs 中执行完成。虽然需要两个指令周期的指令通常指的是 JMP、CALL、RET、RETI 和查表指令,但如果牵涉到程序计数器低字节寄存器 PCL 也将多花费一个周期去加以执行。即指令改变 PCL 的内容进而导致直接跳转至新地址时,需要多一个周期去执行,例如 "CLR PCL"或 "MOV PCL, A"指令。对于跳转指令必须注意的是,如果比较的结果牵涉到跳转动作将多花费一个周期,如果没有则需一个周期即可。

数据的传送

单片机程序中数据传送是使用最为频繁的操作之一,使用三种 MOV 的指令,数据不但可以从寄存器转移至累加器 (反之亦然),而且能够直接移动立即数到累加器。数据传送最重要的应用之一是从输入端口接收数据或传送数据到输出端口。

算术运算

算术运算和数据处理是大部分单片机应用所必需具备的能力,在 Holtek 单片机内部的指令集中,可直接实现加与减的运算。当加法的结果超出 255 或减法的结果少于 0 时,要注意正确的处理进位和借位的问题。INC、INCA、DEC 和DECA 指令提供了对一个指定地址的值加一或减一的功能。

逻辑和移位运算

标准逻辑运算例如 AND、OR、XOR 和 CPL 全都包含在 Holtek 单片机内部的指令集中。大多数牵涉到数据运算的指令,数据的传送必须通过累加器。在所有逻辑数据运算中,如果运算结果为零,则零标志位将被置位,另外逻辑数据运用形式还有移位指令,例如 RR、RL、RRC 和 RLC 提供了向左或向右移动一位的方法。不同的移位指令可满足不同的应用需要。移位指令常用于串行端口的程序应用,数据可从内部寄存器转移至进位标志位,而此位则可被检验,移位运算还可应用在乘法与除法的运算组成中。

分支和控制转换

程序分支是采取使用 JMP 指令跳转至指定地址或使用 CALL 指令调用子程序的形式,两者之不同在于当子程序被执行完毕后,程序必须马上返回原来的地址。这个动作是由放置在子程序里的返回指令 RET 来实现,它可使程序跳回 CALL 指令之后的地址。在 JMP 指令中,程序则只是跳到一个指定的地址而已,并不需如 CALL 指令般跳回。一个非常有用的分支指令是条件跳转,跳转条件是由数据存储器或指定位来加以决定。遵循跳转条件,程序将继续执行下一条指令或略过且跳转至接下来的指令。这些分支指令是程序走向的关键,跳转条件可能是外部开关输入,或是内部数据位的值。

位运算

提供数据存储器中单个位的运算指令是 Holtek 单片机的特性之一。这特性对于输出端口位的设置尤其有用,其中个别的位或端口的引脚可以使用 "SET [m].i"或 "CLR [m].i"指令来设定其为高位或低位。如果没有这特性,程序设计师必须先读入输出口的 8 位数据,处理这些数据,然后再输出正确的新数据。这种读入-修改-写出的过程现在则被位运算指令所取代。

杳表运算

数据的储存通常由寄存器完成,然而当处理大量固定的数据时,它的存储量常常造成对个别存储器的不便。为了改善此问题,Holtek 单片机允许在程序存储器中建立一个表格作为数据可直接存储的区域,只需要一组简易的指令即可对数据进行查表。

其它运算

除了上述功能指令外,其它指令还包括用于省电的"HALT"指令和使程序在极端电压或电磁环境下仍能正常工作的看门狗定时器控制指令。这些指令的使用则请查阅相关的章节。

Rev.1.00 60 2020-03-16

指令集概要

下表中说明了按功能分类的指令集,用户可以将该表作为基本的指令参考。

惯例

x: 立即数

m: 数据存储器地址

A: 累加器

i: 第 0~7 位

addr: 程序存储器地址

助记	符	说明	指令 周期	影响标志位		
算术运算						
ADD	A,[m]	ACC 与数据存储器相加,结果放入 ACC	1	Z, C, AC, OV		
ADDM	A,[m]	ACC 与数据存储器相加,结果放入数据存储器	1注	Z, C, AC, OV		
ADD	A, x	ACC 与立即数相加,结果放入 ACC	1	Z, C, AC, OV		
ADC	A,[m]	ACC 与数据存储器、进位标志相加,结果放入 ACC	1	Z, C, AC, OV		
ADCM	A,[m]	ACC 与数据存储器、进位标志相加,结果放入数据存储器	1注	Z, C, AC, OV		
SUB	A, x	ACC 与立即数相减,结果放入 ACC	1	Z, C, AC, OV		
SUB	A,[m]	ACC 与数据存储器相减,结果放入 ACC	1	Z, C, AC, OV		
SUBM	A,[m]	ACC 与数据存储器相减,结果放入数据存储器	1注	Z, C, AC, OV		
SBC	A,[m]	ACC 与数据存储器、进位标志的反相减,结果放入 ACC	1	Z, C, AC, OV		
SBCM	A,[m]	ACC 与数据存储器、进位标志相减,结果放入数据存储器	1注	Z, C, AC, OV		
DAA	[m]	将加法运算中放入 ACC 的值调整为十进制数,并将结果放入数据存储器	1注	С		
逻辑运算						
AND	A,[m]	ACC 与数据存储器做"与"运算,结果放入 ACC	1	Z		
OR	A,[m]	ACC 与数据存储器做"或"运算,结果放入 ACC	1	Z		
XOR	A,[m]	ACC 与数据存储器做"异或"运算,结果放入 ACC	1	Z		
ANDM	A,[m]	ACC 与数据存储器做"与"运算,结果放入数据存储器	1注	Z		
ORM	A,[m]	ACC 与数据存储器做"或"运算,结果放入数据存储器	1注	Z		
XORM	A,[m]	ACC 与数据存储器做"异或"运算,结果放入数据存储器	1 注	Z		
AND	A, x	ACC 与立即数做"与"运算,结果放入 ACC	1	Z		
OR	A, x	ACC 与立即数做"或"运算,结果放入 ACC	1	Z		
XOR	A, x	ACC 与立即数做"异或"运算,结果放入 ACC	1	Z		
CPL	[m]	对数据存储器取反,结果放入数据存储器	1注	Z		
CPLA	[m]	对数据存储器取反,结果放入 ACC	1	Z		
递增和通	递增和递减					
INCA	[m]	递增数据存储器,结果放入 ACC	1	Z		
INC	[m]	递增数据存储器,结果放入数据存储器	1 注	Z		
DECA	[m]	递减数据存储器,结果放入 ACC	1	Z		
DEC	[m]	递减数据存储器,结果放入数据存储器	1注	Z		
移位						
RRA	[m]	数据存储器右移一位,结果放入 ACC	1	无		
RR	[m]	数据存储器右移一位,结果放入数据存储器	1 注	无		
RRCA	[m]	带进位将数据存储器右移一位,结果放入 ACC	1	С		
RRC	[m]	带进位将数据存储器右移一位,结果放入数据存储器	1注	С		

助记符		说明		影响标志位		
RLA [[m]	数据存储器左移一位,结果放入 ACC	1	无		
RL [[m]	数据存储器左移一位,结果放入数据存储器	1注	无		
RLCA [[m]	带进位将数据存储器左移一位,结果放入 ACC	1	С		
RLC [[m]	带进位将数据存储器左移一位,结果放入数据存储器	1 注	С		
数据传送						
MOV A,[[m]	将数据存储器送至 ACC	1	无		
MOV [m]],A	将 ACC 送至数据存储器	1注	无		
MOV A	, x	将立即数送至 ACC	1	无		
位运算						
CLR [m	n].i	清除数据存储器的位	1注	无		
SET [m	n].i	置位数据存储器的位	1 注	无		
转移						
JMP ac	ddr	无条件跳转	2	无		
SZ [[m]	如果数据存储器为零,则跳过下一条指令	1注	无		
SZA [[m]	数据存储器送至 ACC, 如果内容为零,则跳过下一条指令	1注	无		
SZ [m	n].i	如果数据存储器的第i位为零,则跳过下一条指令	1注	无		
SNZ [m	n].i	如果数据存储器的第i位不为零,则跳过下一条指令	1 ^注	无		
SIZ [m]	递增数据存储器,如果结果为零,则跳过下一条指令	1注	无		
SDZ [m]	递减数据存储器,如果结果为零,则跳过下一条指令	1注	无		
SIZA [[m]	递增数据存储器,将结果放入 ACC, 如果结果为零,则跳过下一条指令	1 ^注	无		
SDZA [m]	递减数据存储器,将结果放入 ACC, 如果结果为零,则跳过下一条指令	1 ^注	无		
CALL ac	ddr	子程序调用	2	无		
RET		从子程序返回	2	无		
RET A	, x	从子程序返回,并将立即数放入 ACC	2	无		
RETI		从中断返回	2	无		
查表						
TABRD [m]	读取特定页或当前页的 ROM 内容,并送至数据存储器和 TBLH	2注	无		
TABRDL [m]	读取最后页的 ROM 内容,并送至数据存储器和 TBLH	2注	无		
其它指令						
NOP		空指令	1	无		
CLR [m]	清除数据存储器	1注	无		
SET [[m]	置位数据存储器	1注	无		
CLR WI	DT	清除看门狗定时器	1	TO, PDF		
CLR WD	T1	预清除看门狗定时器	1	TO, PDF		
CLR WD	T2	预清除看门狗定时器	1	TO, PDF		
SWAP [[m]	交换数据存储器的高低字节,结果放入数据存储器	1注	无		
SWAPA [m]	交换数据存储器的高低字节,结果放入 ACC	1	无		
HALT		进入暂停模式	1	TO, PDF		

- 注: 1. 对跳转指令而言,如果比较的结果牵涉到跳转即需多达 2 个周期,如果没有发生跳转,则只需一个周期。
 - 2. 任何指令若要改变 PCL 的内容将需要 2 个周期来执行。
 - 3. 对于 "CLR WDT1" 或 "CLR WDT2" 指令而言, TO 和 PDF 标志位也许会受执行结果影响, "CLR WDT1" 和 "CLR WDT2" 被连续地执行后, TO 和 PDF 标志位会被清除, 否则 TO 和 PDF 标志位保持不变。

Rev.1.00 62 2020-03-16

指令定义

ADC A, [m] Add Data Memory to ACC with Carry

指令说明 将指定的数据存储器、累加器内容以及进位标志相加,

结果存放到累加器。

功能表示 $ACC \leftarrow ACC + [m] + C$

影响标志位 OV、Z、AC、C

ADCM A, [m] Add ACC to Data Memory with Carry

指令说明 将指定的数据存储器、累加器内容和进位标志位相加,

结果存放到指定的数据存储器。

功能表示 $[m] \leftarrow ACC + [m] + C$ 影响标志位 $OV \setminus Z \setminus AC \setminus C$

ADD A, [m] Add Data Memory to ACC

指令说明 将指定的数据存储器和累加器内容相加,

结果存放到累加器。

功能表示 $ACC \leftarrow ACC + [m]$ 影响标志位 $OV \setminus Z \setminus AC \setminus C$

ADD A, x Add immediate data to ACC

指令说明将累加器和立即数相加,结果存放到累加器。

功能表示 $ACC \leftarrow ACC + x$ 影响标志位 $OV \setminus Z \setminus AC \setminus C$

ADDM A, [m] Add ACC to Data Memory

指令说明 将指定的数据存储器和累加器内容相加,

结果存放到指定的数据存储器。

功能表示 $[m] \leftarrow ACC + [m]$ 影响标志位 $OV \setminus Z \setminus AC \setminus C$

AND A, [m] Logical AND Data Memory to ACC

指令说明 将累加器中的数据和指定数据存储器内容做逻辑与,

结果存放到累加器。

功能表示 ACC ← ACC "AND" [m]

AND A, x Logical AND immediate data to ACC

指令说明将累加器中的数据和立即数做逻辑与,结果存放到累加器。

功能表示 ACC ← ACC "AND" x

影响标志位 Z

ANDM A, [m] Logical AND ACC to Data Memory

指令说明 将指定数据存储器内容和累加器中的数据做逻辑与,

结果存放到数据存储器。

功能表示 [m] ← ACC "AND" [m]

影响标志位 Z

CALL addr Subroutine call

指令说明 无条件地调用指定地址的子程序,此时程序计数器先加1

获得下一个要执行的指令地址并压入堆栈,接着载入指定地址并从新地址继续执行程序,由于此指令需要额外的运

算,所以为一个2周期的指令。

功能表示 Stack ← Program Counter + 1

Program Counter ← addr

影响标志位 无

CLR [m] Clear Data Memory

指令说明将指定数据存储器的内容清零。

功能表示 [m] ← 00H

影响标志位 无

CLR [m].i Clear bit of Data Memory

指令说明 将指定数据存储器的 i 位内容清零。

功能表示 [m].i ← 0

影响标志位 无

CLR WDT Clear Watchdog Timer

指令说明 WDT 计数器、暂停标志位 PDF 和看门狗溢出标志位 TO

清零。

功能表示 WDT cleared

TO & PDF $\leftarrow 0$

影响标志位 TO、PDF

CLR WDT1 Preclear Watchdog Timer

指令说明 PDF 和 TO 标志位都被清 0。必须配合 CLR WDT2 一起使

用清除 WDT 计时器。当程序仅执行 CLR WDT1, 而没有

执行 CLR WDT2 时, PDF 与 TO 保留原状态不变。

功能表示 WDT ← 00H

TO & PDF $\leftarrow 0$

影响标志位 TO、PDF

CLR WDT2 Preclear Watchdog Timer

指令说明 PDF 和 TO 标志位都被清 0。必须配合 CLR WDT1 一起使

用清除 WDT 计时器。当程序仅执行 CLR WDT2, 而没有

执行 CLR WDT1 时, PDF 与 TO 保留原状态不变。

功能表示 WDT ← 00H

TO & PDF $\leftarrow 0$

影响标志位 TO、PDF

CPL [m] Complement Data Memory

指令说明 将指定数据存储器中的每一位取逻辑反,

相当于从1变0或0变1。

功能表示 $[m] \leftarrow [\overline{m}]$

影响标志位Z

CPLA [m] Complement Data Memory with result in ACC

指令说明 将指定数据存储器中的每一位取逻辑反,相当于从1变0

或0变1,而结果被储存回累加器且数据存储器中的内容

不变。

功能表示 ACC←[m]

DAA [m] Decimal-Adjust ACC for addition with result in Data Memory

指令说明 将累加器中的内容转换为BCD(二进制转成十进制)码。

如果低四位的值大于"9"或 AC=1,那么 BCD 调整就执行对原值加"6",否则原值保持不变;如果高四位的值大于"9"或 C=1,那么 BCD 调整就执行对原值加"6"。BCD 转换实质上是根据累加器和标志位执行 00H,06H,60H或 66H 的加法运算,结果存放到数据存储器。只有进位标志位 C 受影响,用来指示原始 BCD 的和是否大于100,并可以进行双精度十进制数的加法运算。

功能表示 [m] ← ACC + 00H 或

 $[m] \leftarrow ACC + 06H$ 或 $[m] \leftarrow ACC + 60H$ 或 $[m] \leftarrow ACC + 66H$

影响标志位C

DEC [m] Decrement Data Memory

指令说明 将指定数据存储器内容减 1。

功能表示 [m] ← [m] – 1

影响标志位 Z

DECA [m] Decrement Data Memory with result in ACC

指令说明 将指定数据存储器的内容减 1,把结果存放回累加器

并保持指定数据存储器的内容不变。

功能表示 $ACC \leftarrow [m] - 1$

影响标志位 Z

HALT Enter power down mode

指令说明 此指令终止程序执行并关掉系统时钟,RAM 和寄存器的内

容保持原状态, WDT 计数器和分频器被清"0", 暂停标

志位 PDF 被置位 1, WDT 溢出标志位 TO 被清 0。

功能表示 $TO \leftarrow 0$

 $PDF \leftarrow 1$

影响标志位 TO、PDF

INC [m] Increment Data Memory

指令说明 将指定数据存储器的内容加 1。

功能表示 $[m] \leftarrow [m] + 1$

INCA [m] Increment Data Memory with result in ACC

指令说明 将指定数据存储器的内容加 1,结果存放回累加器并保持

指定的数据存储器内容不变。

功能表示 $ACC \leftarrow [m] + 1$

影响标志位 Z

JMP addr Jump unconditionally

指令说明 程序计数器的内容无条件地由被指定的地址取代,

程序由新的地址继续执行。当新的地址被加载时,

必须插入一个空指令周期,所以此指令为2个周期的指令。

功能表示 Program Counter ← addr

影响标志位 无

MOV A, [m] Move Data Memory to ACC

指令说明将指定数据存储器的内容复制到累加器。

功能表示 ACC← [m]

影响标志位 无

MOV A, xMove immediate data to ACC指令说明将 8 位立即数载入累加器。

功能表示 ACC←x

影响标志位 无

MOV [m], A Move ACC to Data Memory

指令说明将累加器的内容复制到指定的数据存储器。

功能表示 [m] ← ACC

影响标志位 无

NOP No operation

指令说明 空操作,接下来顺序执行下一条指令。

功能表示 $PC \leftarrow PC + 1$

影响标志位 无

OR A, [m] Logical OR Data Memory to ACC

指令说明 将累加器中的数据和指定的数据存储器内容逻辑或,

结果存放到累加器。

功能表示 ACC ← ACC "OR" [m]

OR A, x Logical OR immediate data to ACC

指令说明将累加器中的数据和立即数逻辑或,结果存放到累加器。

功能表示 ACC←ACC "OR" x

影响标志位 Z

ORM A, [m] Logical OR ACC to Data Memory

指令说明 将存在指定数据存储器中的数据和累加器逻辑或,

结果放到数据存储器。

功能表示 [m] ← ACC "OR" [m]

影响标志位Z

RET Return from subroutine

指令说明 将堆栈寄存器中的程序计数器值恢复,

程序由取回的地址继续执行。

功能表示 Program Counter←Stack

影响标志位 无

RET A, x Return from subroutine and load immediate data to ACC

指令说明 将堆栈寄存器中的程序计数器值恢复且累加器载入指定的

立即数,程序由取回的地址继续执行。

功能表示 Program Counter ← Stack

ACC←x

影响标志位 无

RETI Return from interrupt

指令说明将堆栈寄存器中的程序计数器值恢复且中断功能通过设置

EMI 位重新使能。EMI 是控制中断使能的主控制位。如果 在执行 RETI 指令之前还有中断未被相应,则这个中断将

在返回主程序之前被相应。

功能表示 Program Counter ←Stack

 $EMI \leftarrow 1$

影响标志位 无

RL [m] Rotate Data Memory left

指令说明 将指定数据存储器的内容左移 1 位,且第 7 位移到第 0 位。

功能表示 [m].(i+1) ← [m].i (i=0~6)

 $[m].0 \leftarrow [m].7$

RLA [m] Rotate Data Memory left with result in ACC

指令说明 将指定数据存储器的内容左移 1 位, 且第 7 位移到第 0 位,

结果送到累加器,而指定数据存储器的内容保持不变。

功能表示 ACC.(i+1) ← [m].i (i=0~6)

 $ACC.0 \leftarrow [m].7$

影响标志位 无

RLC [m] Rotate Data Memory Left through Carry

指令说明 将指定数据存储器的内容连同进位标志左移 1 位,

第7位取代进位标志且原本的进位标志移到第0位。

功能表示 [m].(i+1) ← [m].i (i=0~6)

 $[m].0 \leftarrow C$

 $C \leftarrow [m].7$

影响标志位C

RLC A [m] Rotate Data Memory left through Carry with result in ACC

指令说明 将指定数据存储器的内容连同进位标志左移1位,第7位

取代进位标志且原本的进位标志移到第0位,移位结果送

回累加器,但是指定数据寄存器的内容保持不变。

功能表示 ACC.(i+1) ← [m].i (i=0~6)

 $ACC.0 \leftarrow C$

 $C \leftarrow [m].7$

影响标志位 C

RR [m] Rotate Data Memory right

指令说明 将指定数据存储器的内容循环右移 1 位且第 0 位移到

第7位。

功能表示 [m].i ← [m].(i+1) (i=0~6)

 $[m].7 \leftarrow [m].0$

影响标志位 无

RRA [m] Rotate Data Memory right with result in ACC

指令说明 将指定数据存储器的内容循环右移 1 位,第 0 位移到

第7位,移位结果存放到累加器,而指定数据存储器的内

容保持不变。

功能表示 ACC.i ← [m].(i+1) (i=0~6)

 $ACC.7 \leftarrow [m].0$

RRC [m] Rotate Data Memory right through Carry

指令说明 将指定数据存储器的内容连同进位标志右移 1 位,

第0位取代进位标志且原本的进位标志移到第7位。

功能表示 [m].i ← [m].(i+1) (i=0~6)

[m].7← C

 $C \leftarrow [m].0$

影响标志位 C

RRCA [m] Rotate Data Memory right through Carry with result in ACC

指令说明 将指定数据存储器的内容连同进位标志右移1位,第0位

取代进位标志且原本的进位标志移到第7位,移位结果送

回累加器, 但是指定数据寄存器的内容保持不变。

功能表示 ACC.i ← [m].(i+1) (i=0~6)

 $ACC.7 \leftarrow C$

 $C \leftarrow [m].0$

影响标志位 C

SBC A, [m] Subtract Data Memory from ACC with Carry

指令说明 将累加器减去指定数据存储器的内容以及进位标志的反,

结果存放到累加器。如果结果为负, C标志位清除为0,

反之结果为正或 0, C 标志位设置为 1。

功能表示 $ACC \leftarrow ACC - [m] - \overline{C}$

影响标志位 OV、Z、AC、C、SC、CZ

SBCM A, [m] Subtract Data Memory from ACC with Carry and result in Data

Memory

指令说明 将累加器减去指定数据存储器的内容以及进位标志的反,

结果存放到数据存储器。如果结果为负, C标志位清除为0,

反之结果为正或 0, C 标志位设置为 1。

功能表示 $[m] \leftarrow ACC - [m] - \overline{C}$

影响标志位 OV、Z、AC、C、SC、CZ

SDZ [m] Skip if Decrement Data Memory is 0

指令说明 将指定的数据存储器的内容减 1,判断是否为 0,若为 0则

跳过下一条指令,由于取得下一个指令时会要求插入一个空指令周期,所以此指令为2个周期的指令。如果结果不

为 0,则程序继续执行下一条指令。

功能表示 $[m] \leftarrow [m] - 1$, 如果 [m] = 0 跳过下一条指令执行

SDZA [m] Decrement data memory and place result in ACC, skip if 0

指令说明 将指定数据存储器内容减 1,判断是否为 0,如果为 0 则跳

过下一条指令,此结果将存放到累加器,但指定数据存储器内容不变。由于取得下一个指令时会要求插入一个空指令周期,所以此指令为2个周期的指令。如果结果不为0,

则程序继续执行下一条指令。

功能表示 $ACC \leftarrow [m] - 1$, 如果 ACC=0 跳过下一条指令执行

影响标志位 无

SET [m] Set Data Memory

指令说明 将指定数据存储器的每一位设置为1。

功能表示 [m]←FFH

影响标志位 无

SET [m].i Set bit of Data Memory

指令说明 将指定数据存储器的第 i 位置位为 1。

功能表示 [m].i ← 1

影响标志位 无

SIZ [m] Skip if increment Data Memory is 0

指令说明 将指定的数据存储器的内容加 1,判断是否为 0,若为 0则

跳过下一条指令。由于取得下一个指令时会要求插入一个空指令周期,所以此指令为2个周期的指令。如果结果不

为 0,则程序继续执行下一条指令。

功能表示 $[m] \leftarrow [m] + 1$, 如果 [m] = 0 跳过下一条指令执行

影响标志位 无

SIZA [m] Skip if increment Data Memory is zero with result in ACC

指令说明 将指定数据存储器的内容加1,判断是否为0,如果为0则

跳过下一条指令,此结果会被存放到累加器,但是指定数据存储器的内容不变。由于取得下一个指令时会要求插入一个空指令周期,所以此指令为2个周期的指令。如果结

果不为0,则程序继续执行下一条指令。

功能表示 $ACC \leftarrow [m] + 1$, 如果 ACC=0 跳过下一条指令执行

SNZ [m].i Skip if bit i of Data Memory is not 0

指令说明 判断指定数据存储器的第 i 位,若不为 0,则程序跳过下一

条指令执行。由于取得下一个指令时会要求插入一个空指 令周期,所以此指令为2个周期的指令。如果结果为0,

则程序继续执行下一条指令。

功能表示 如果 [m].i≠0, 跳过下一条指令执行

影响标志位 无

SUB A, [m] Subtract Data Memory from ACC

指令说明将累加器的内容减去指定的数据存储器的数据,把结果存

放到累加器。如果结果为负, C标志位清除为0, 反之结果

为正或 0, C 标志位设置为 1。

功能表示 $ACC \leftarrow ACC - [m]$

影响标志位 OV、Z、AC、C、SC、CZ

SUBM A, [m] Subtract Data Memory from ACC with result in Data Memory

指令说明将累加器的内容减去指定数据存储器的数据,结果存放到

指定的数据存储器。如果结果为负, C 标志位清除为 0,

反之结果为正或 0, C 标志位设置为 1。

功能表示 $[m] \leftarrow ACC - [m]$

影响标志位 OV、Z、AC、C、SC、CZ

SUB A, x Subtract immediate Data from ACC

指令说明将累加器的内容减去立即数,结果存放到累加器。如果结

果为负, C标志位清除为0, 反之结果为正或0, C标志位

设置为1。

功能表示 ACC ← ACC - x

影响标志位 OV、Z、AC、C、SC、CZ

SWAP [m] Swap nibbles of Data Memory

指令说明 将指定数据存储器的低 4 位和高 4 位互相交换。

功能表示 [m].3~[m].0 ↔ [m].7~[m].4

影响标志位 无

SWAPA [m] Swap nibbles of Data Memory with result in ACC

指令说明 将指定数据存储器的低 4 位与高 4 位互相交换,再将结果

存放到累加器且指定数据寄存器的数据保持不变。

功能表示 ACC.3~ACC.0 ← [m].7~[m].4

 $ACC.7 \sim ACC.4 \leftarrow [m].3 \sim [m].0$

影响标志位 无

SZ [m] Skip if Data Memory is 0

指令说明 判断指定数据存储器的内容是否为 0, 若为 0, 则程序跳过

下一条指令执行。由于取得下一个指令时会要求插入一个空指令周期,所以此指令为2个周期的指令。如果结果不

为0,则程序继续执行下一条指令。

功能表示 如果 [m]=0, 跳过下一条指令执行

影响标志位 无

SZA [m] Skip if Data Memory is 0 with data movement to ACC

指令说明 将指定数据存储器内容复制到累加器,并判断指定数据存

储器的内容是否为 0, 若为 0 则跳过下一条指令。由于取得下一个指令时会要求插入一个空指令周期,所以此指令为 2 个周期的指令。如果结果不为 0, 则程序继续执行下

一条指令。

功能表示 $ACC \leftarrow [m]$, 如果 [m]=0, 跳过下一条指令执行

影响标志位 无

SZ [m].i Skip if bit i of Data Memory is 0

指令说明 判断指定数据存储器的第i位是否为0,若为0,则跳过下

一条指令。由于取得下一个指令时会要求插入一个空指令周期,所以此指令为2个周期的指令。如果结果不为0,

则程序继续执行下一条指令。

功能表示 如果 [m].i=0, 跳过下一条指令执行

影响标志位 无

TABRD [m] Read table (specific page or current page) to TBLH and Data Memory

指令说明 将表格指针 (TBHP 和 TBLP, 若无 TBHP 则仅 TBLP) 所指

的程序代码低字节移至指定数据存储器且将高字节移至

TBLH.

功能表示 [m] ← 程序代码 (低字节)

TBLH ← 程序代码 (高字节)

影响标志位 无

TABRDL [m] Read table (last page) to TBLH and Data Memory

指令说明 将表格指针 TBLP 所指的程序代码低字节(最后一页)

移至指定数据存储器且将高字节移至 TBLH。

功能表示 [m] ← 程序代码 (低字节)

TBLH ← 程序代码 (高字节)

XOR A, [m] Logical XOR Data Memory to ACC

指令说明 将累加器的数据和指定的数据存储器内容逻辑异或,

结果存放到累加器。

功能表示 ACC ← ACC "XOR" [m]

影响标志位 Z

XORM A, [m] Logical XOR ACC to Data Memory

指令说明 将累加器的数据和指定的数据存储器内容逻辑异或,

结果放到数据存储器。

功能表示 [m] ← ACC "XOR" [m]

影响标志位 Z

XOR A, x Logical XOR immediate data to ACC

指令说明 将累加器的数据与立即数逻辑异或,结果存放到累加器。

功能表示 ACC ← ACC "XOR" x

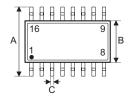
封装信息

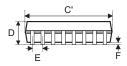
请注意,这里提供的封装信息仅作为参考。由于这个信息经常更新,提醒用户 咨询 Holtek 网站 以获取最新版本的封装信息。

封装信息的相关内容如下所示,点击可链接至 Holtek 网站相关信息页面。

- 封装信息(包括外形尺寸、包装带和卷轴规格)
- 封装材料信息
- 纸箱信息

8-pin SOP (150mil) 外形尺寸




符号	尺寸(单位: inch)				
19.5	最小值	典型值	最大值		
A	_	0.236 BSC	_		
В	_	0.154 BSC	_		
С	0.012	_	0.020		
C'	_	0.193 BSC	_		
D	_	_	0.069		
Е	_	0.050 BSC	_		
F	0.004	_	0.010		
G	0.016	_	0.050		
Н	0.004	_	0.010		
α	0°	_	8°		

符号	尺寸(単位: mm)			
1寸写	最小值	典型值	最大值	
A	_	6.00 BSC	_	
В	_	3.90 BSC	_	
С	0.31	_	0.51	
C'	_	4.90 BSC	_	
D	_	_	1.75	
Е	_	1.27 BSC	_	
F	0.10	_	0.25	
G	0.40	_	1.27	
Н	0.10	_	0.25	
α	0°	_	8°	

16-pin NSOP (150mil) 外形尺寸

2012	尺寸(单位: inch)				
符号	最小值	典型值	最大值		
A	_	0.236 BSC			
В	_	0.154 BSC			
С	0.012	_	0.020		
C'	_	0.390 BSC			
D	_	_	0.069		
Е	_	0.050 BSC	_		
F	0.004	_	0.010		
G	0.016	_	0.050		
Н	0.004	_	0.010		
α	0°	_	8°		

符号	尺寸(单位: mm)				
1ग 5	最小值	典型值	最大值		
A	_	6.00 BSC	_		
В	_	3.90 BSC	_		
С	0.31	_	0.51		
C'	_	9.90 BSC			
D	_	_	1.75		
Е	_	1.27 BSC	_		
F	0.10	_	0.25		
G	0.40	_	1.27		
Н	0.10	_	0.25		
α	0°	_	8°		

Copyright[©] 2020 by HOLTEK SEMICONDUCTOR INC.

使用指南中所出现的信息在出版当时相信是正确的,然而 Holtek 对于说明书的使用不负任何责任。文中提到的应用目的仅仅是用来做说明,Holtek 不保证或表示这些没有进一步修改的应用将是适当的,也不推荐它的产品使用在会由于故障或其它原因可能会对人身造成危害的地方。Holtek 产品不授权使用于救生、维生从机或系统中做为关键从机。Holtek 拥有不事先通知而修改产品的权利,对于最新的信息,请参考我们的网址 http://www.holtek.com/zh/.

Rev.1.00 78 2020-03-16